Simulating solar near-surface Rossby waves by inverse cascade from supergranule energy

dc.creatorMausumi Dikpati
dc.creatorPeter A. Gilman
dc.creatorGustavo Andres Guerrero Eraso
dc.creatorAlexander G. Kosovichev
dc.creatorScott William McIntosh
dc.creatorKatepalli Raju Sreenivasan
dc.creatorJörn Warnecke
dc.creatorTeimuraz V. Zaqarashvili
dc.date.accessioned2023-11-13T13:17:34Z
dc.date.accessioned2025-09-09T00:31:34Z
dc.date.available2023-11-13T13:17:34Z
dc.date.issued2022
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac674b
dc.identifier.issn1538-4357
dc.identifier.urihttps://hdl.handle.net/1843/60854
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofThe Astrophysical Journal
dc.rightsAcesso Aberto
dc.subjectSol
dc.subject.otherSolar photosphere
dc.subject.otherSolar motion
dc.subject.otherSolar physics
dc.titleSimulating solar near-surface Rossby waves by inverse cascade from supergranule energy
dc.typeArtigo de periódico
local.citation.epage18
local.citation.issue2
local.citation.spage1
local.citation.volume931
local.description.resumoRossby waves are found at several levels in the Sun, most recently in its supergranule layer. We show that Rossby waves in the supergranule layer can be excited by an inverse cascade of kinetic energy from the nearly horizontal motions in supergranules. We illustrate how this excitation occurs using a hydrodynamic shallow-water model for a 3D thin rotating spherical shell. We find that initial kinetic energy at small spatial scales inverse cascades quickly to global scales, exciting Rossby waves whose phase velocities are similar to linear Rossby waves on the sphere originally derived by Haurwitz. Modest departures from the Haurwitz formula originate from nonlinear finite amplitude effects and/or the presence of differential rotation. Like supergranules, the initial small-scale motions in our model contain very little vorticity compared to their horizontal divergence, but the resulting Rossby waves are almost all vortical motions. Supergranule kinetic energy could have mainly gone into gravity waves, but we find that most energy inverse cascades to global Rossby waves. Since kinetic energy in supergranules is three or four orders of magnitude larger than that of the observed Rossby waves in the supergranule layer, there is plenty of energy available to drive the inverse-cascade mechanism. Tachocline Rossby waves have previously been shown to play crucial roles in causing seasons of space weather through their nonlinear interactions with global flows and magnetic fields. We briefly discuss how various Rossby waves in the tachocline, convection zone, supergranule layer, and corona can be reconciled in a unified framework.
local.identifier.orcidhttps://orcid.org/0000-0002-2227-0488
local.identifier.orcidhttps://orcid.org/0000-0002-1639-6252
local.identifier.orcidhttps://orcid.org/0000-0002-2671-8796
local.identifier.orcidhttps://orcid.org/0000-0003-0364-4883
local.identifier.orcidhttps://orcid.org/0000-0002-7369-1776
local.identifier.orcidhttps://orcid.org/0000-0002-9292-4600
local.identifier.orcidhttps://orcid.org/0000-0001-5015-5762
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://iopscience.iop.org/article/10.3847/1538-4357/ac674b

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Simulating Solar Near-surface Rossby Waves.pdf
Tamanho:
1.52 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: