A simple necessary and sufficient LMI condition for the strong delay-independent stability of LTI systems with single delay

dc.creatorFernando de Oliveira Souza
dc.creatorMaurício Carvalho de Oliveira
dc.creatorReinaldo Martinez Palhares
dc.date.accessioned2025-04-24T18:15:19Z
dc.date.accessioned2025-09-08T23:13:25Z
dc.date.available2025-04-24T18:15:19Z
dc.date.issued2018
dc.identifier.doihttps://doi.org/10.1016/j.automatica.2017.11.006
dc.identifier.issn0005-1098
dc.identifier.urihttps://hdl.handle.net/1843/81820
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofAutomatica
dc.rightsAcesso Restrito
dc.subjectControladores PID
dc.subjectControle robusto
dc.subject.otherTime-delay
dc.subject.otherDelay-independent stability
dc.subject.otherKronecker sum properties
dc.subject.otherKalman–Yakubovich–Popov lemma
dc.subject.otherLMI
dc.titleA simple necessary and sufficient LMI condition for the strong delay-independent stability of LTI systems with single delay
dc.typeArtigo de periódico
local.citation.epage410
local.citation.spage407
local.citation.volume89
local.description.resumoThis paper is concerned with strong delay-independent stability of linear time-invariant (LTI) systems with a single time-delay. Stability analysis of linear delay-systems is complicated by the need to locate the roots of a transcendental characteristic equation. In this paper we propose a convex necessary and sufficient condition for strong delay-independent stability. This result mainly follows from the Kronecker sum properties and the Kalman–Yakubovich–Popov lemma, which allows us to present the main result in terms of a single linear matrix inequality (LMI) feasibility test. The result is illustrated by simple numerical examples.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://www.sciencedirect.com/science/article/pii/S0005109817305472

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: