Uma estratégia híbrida para o problema de classificação multirrótulo

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Gisele Lobo Pappa
Ahmed Ali Abdalla Esmin.
Adriano Alonso Veloso
Thiago de Souza Rodrigues

Resumo

Este trabalho apresenta um novo método para resolver o problema de classificação multirrótulo, baseado no método de enxame de partículas, chamado Multi Label K-Nearest Michigam Particle Swarm Optimization (ML-KMPSO), que foi avaliado utilizando-se duas bases de dados reais. A aprendizagem multirrótulo se originou na categorização de textos, onde cada documento pode pertencer a várias classes simultaneamente.Neste trabalho é proposta uma nova abordagem híbrida, na qual o ML-KMPSO se enquadra. Esta abordagem é baseada em duas estratégias. A primeira estratégia é a divisão do problema multirrótulo em diversos problemas binários, sendo que para tal foi utilizado o Michigan Particle Swarm Optimization (MPSO) para resolvê-los, porém,esta estratégia não leva em consideração as correlações existentes entre as classes. Já a segunda estratégia tem como objetivo considerar as correlações existentes entre as classes utilizando o Multi Label K-Nearest Neighbor (ML-KNN). Avaliamos a performance do ML-KMPSO utilizando a base Yeast (classificação funcional de genes) e a base Scene (classificação semântica de cenas). Os resultados obtidos pelo ML-KMPSO se igualam ou superam algoritmos de classificação multirrótulo do estado da arte

Abstract

This work presents a new method for multi-label classification based on Particle Swarm Optimization, called Multi Label K-Nearest Michigan Particle Swarm Optimization ML-KMPSO) and evaluates it experimentally using two real-world datasets. Multilabel learning first arose in the context of text categorization, where each document may belong to several classes simultaneously. In this work, we propose a new hybridapproach, ML-KMPSO. It is based on two strategies. The first strategy is the Michigan Particle Swarm Optimization (MPSO), which breaks the multi-label classification task into several binary classification problems, but it does not take into account the correlations among the various classes. The second strategy is Multi Label K-Nearest Neighbor (ML-KNN), which is complementary and takes into account the correlations among classes. We evaluated the performance of ML-KMPSO using two real-world datasets: Yeast gene functional analysis and natural scene classification. The experimental results show that ML-KMPSO produced results that match or outperform well-established multi-label learning algorithms.

Assunto

Computação

Palavras-chave

classificação multi-rótulo, Mineração de dados, Método de Enxame de Partículas

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por