Deep-learning-based denoising approach to enhance Raman spectroscopy in mass-produced graphene
| dc.creator | Lucas Resende Pellegrinelli Machado | |
| dc.creator | Mariana de Oliveira Santos Silva | |
| dc.creator | João Luiz Elias Campos | |
| dc.creator | Diego Edison Lopez Silva | |
| dc.creator | Luiz Gustavo de Oliveira Lopes Cançado | |
| dc.creator | Omar Paranaiba Vilela Neto | |
| dc.date.accessioned | 2025-04-15T15:03:16Z | |
| dc.date.accessioned | 2025-09-09T00:31:43Z | |
| dc.date.available | 2025-04-15T15:03:16Z | |
| dc.date.issued | 2022 | |
| dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | |
| dc.description.sponsorship | FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais | |
| dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | |
| dc.description.sponsorship | Outra Agência | |
| dc.identifier.doi | https://doi.org/10.1002/jrs.6317 | |
| dc.identifier.issn | 1097-4555 | |
| dc.identifier.uri | https://hdl.handle.net/1843/81607 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.relation.ispartof | The journal of Raman spectroscopy | |
| dc.rights | Acesso Restrito | |
| dc.subject | Aprendizado profundo | |
| dc.subject | Grafeno | |
| dc.subject | Redes neurais | |
| dc.subject | Espectroscopia de Raman | |
| dc.subject.other | Deep-learning | |
| dc.subject.other | Mass-produced graphene | |
| dc.subject.other | Neural networks | |
| dc.subject.other | Spectra denoising | |
| dc.title | Deep-learning-based denoising approach to enhance Raman spectroscopy in mass-produced graphene | |
| dc.type | Artigo de periódico | |
| local.citation.epage | 871 | |
| local.citation.issue | 5 | |
| local.citation.spage | 863 | |
| local.citation.volume | 53 | |
| local.description.resumo | The inherently weak signal present in Raman spectroscopy makes spectral resolution susceptible to noise. Hence, efficient denoising techniques for post-processing of spectral data are required. We introduce two efficient approaches to remove noise from graphene Raman spectra, based on deep neural network architectures using supervised and unsupervised learning. We compared the performance of these approaches with three traditional noise removal methods. The experimental results demonstrate the effectiveness of deep-learning models in the denoising task, which is crucial in interpreting characterization data of mass-produced graphene. Overall, our supervised approach outperforms all considered baselines, as well as the unsupervised method, providing significant improvement in noise reduction. | |
| local.identifier.orcid | https://orcid.org/0000-0002-1630-8005 | |
| local.identifier.orcid | https://orcid.org/0000-0002-8071-0525 | |
| local.identifier.orcid | https://orcid.org/0000-0002-7073-1226 | |
| local.identifier.orcid | https://orcid.org/0000-0003-0816-0888 | |
| local.identifier.orcid | https://orcid.org/0000-0003-1769-0629 | |
| local.publisher.country | Brasil | |
| local.publisher.department | ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO | |
| local.publisher.department | ICX - DEPARTAMENTO DE FÍSICA | |
| local.publisher.initials | UFMG | |
| local.url.externa | https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.6317 |
Arquivos
Licença do pacote
1 - 1 de 1