Annotating diverse scientific data with hasco

dc.creatorPaulo Pinheiro
dc.creatorMarcello Peixoto Bax
dc.creatorHenrique Santos
dc.creatorSabbir Rashid
dc.creatorZhicheng Liang
dc.creatorYue Liu
dc.creatorJames Mccusker
dc.creatorDeborah Mcguinness
dc.creatorYarden Ne’eman
dc.date.accessioned2023-04-03T21:00:28Z
dc.date.accessioned2025-09-08T23:11:03Z
dc.date.available2023-04-03T21:00:28Z
dc.date.issued2018
dc.format.mimetypepdf
dc.identifier.issn1613-0073
dc.identifier.urihttps://hdl.handle.net/1843/51523
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofSeminar on Ontology Research in Brazil
dc.rightsAcesso Aberto
dc.subjectOntologias (Recuperação da informação)
dc.subjectGestão da Informação
dc.subject.otherHASco
dc.subject.otherOntologias
dc.titleAnnotating diverse scientific data with hasco
dc.typeArtigo de evento
local.citation.epage91
local.citation.issue11
local.citation.spage80
local.description.resumoOntologies are being widely used across many scientific fields, most notably in roles related to acquiring, preparing, integrating and managing data resources. Data acquisition and preparation activities are often difficult to reuse since they tend to be domain dependent, as well as dependent on how data is acquired: through measurement, subject-elicitation, and/or model-generation activities. Therefore, tools developed for preparing data from one scientific activity often cannot be easily adapted to prepare data from other scientific activities. We introduce the Human-Aware Science Ontology (HAScO) that integrates a collection of well-established science-related ontologies, and aims to address issues related to data annotation for large data ecosystem, where data can come from diverse data sources including sensors, lab results, and questionnaires. The work reported in the paper is based on our experience developing HAScO, using it to annotate data collections to facilitate data exploration and analysis for numerous scientific projects, three of which will be described. Data files produced by scientific studies are processed to identify and annotate the objects (a gene, for instance) with the appropriate ontological terms. One benefit we realized (of preserving scientific data provenance) is that software platforms can support scientists in their exploration and preparation of data for analysis since the meaning of and interrelationships between the data is explicit.
local.identifier.orcidhttps://orcid.org/0000-0001-8469-4043
local.identifier.orcidhttps://orcid.org/0000-0003-0503-3031
local.identifier.orcidhttps://orcid.org/0000-0002-4162-8334
local.identifier.orcidhttps://orcid.org/0000-0001-9646-1183
local.identifier.orcidhttps://orcid.org/0000-0003-1085-6059
local.identifier.orcidhttps://orcid.org/0000-0001-7037-4567
local.identifier.orcidhttps://orcid.org/0000-0002-3017-2722
local.publisher.countryBrasil
local.publisher.departmentECI - DEPARTAMENTO DE TEORIA E GESTÃO INFORMAÇÃO
local.publisher.initialsUFMG
local.url.externahttps://ceur-ws.org/Vol-2228/

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Annotating diverse scientific data with hasco
Tamanho:
738.54 KB
Formato:
Unknown data format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: