Processos de markov ponderado-gama e modelagem de séries temporais inteiras multivariadas via cópulas

dc.creatorFernanda Gabriely Batista Mendes
dc.date.accessioned2022-11-28T13:49:40Z
dc.date.accessioned2025-09-09T00:11:19Z
dc.date.available2022-11-28T13:49:40Z
dc.date.issued2022-08-19
dc.description.abstractIn this work we propose two models for time series, motivated by financial market applications. First, we propose a Markov process for positive continuous series, driven by a gamma weight density, the weighted-gamma Markov process (PG). The PG process is stationary, time reversible, and is defined from its transition density. We investigated the GIG (Generalized Inverse Gaussian) distribution and the gamma distribution as potential marginal distributions for the process, which returned several explicit results. Parameter estimation of the PG-GIG and PG-Ga processes was performed via the maximum likelihood method. To evaluate the proposed inferential method, we performed a Monte Carlo simulation study. Additionally, we conducted an empirical study, regarding the adjustment of PG-GIG and PG-Ga processes to volatility data from the log-returns of the stocks that make up the FTSE 100 index, of the London Stock Exchange. We implement a \textit{pseudo prediction} exercise and evaluate the performance of the processes through a residuals analysis, by means of simulated envelopes, and verify the model calibration with the construction of PIT (Probability Integral Transform) histograms. The second proposal is a class of models for multivariate whole time series analysis, built by combining the INGARCH (INteger valued Generalized AutoRegressive Conditional Heteroskedastic) methodology with copulas. The proposed process is denoted as the copula-INGARCH (CINGARCH) process. Temporal and contemporaneous dynamics (cross-dependence of the model-fitted series) are incorporated into the process using the INGARCH methodology. As potential conditional distributions, we investigate the discrete Laplace (LD) and Skellam distributions. Parameter estimation of the LD-CINGARCH and Skellam-CINGARCH processes was performed via the two-steps maximum likelihood method. To evaluate the proposed inferential method, we performed a Monte Carlo simulation study. In addition, the proposed methodology was used to jointly model the change in the exchange rate ticks of the Euro to Pound Sterling (EUR/GBP) and the Euro to US Dollar (EUR/USD). We evaluate the goodness of fit of the LD-CINGARCH and Skellam-CINGARCH processes marginally by constructing PIT histograms and simulated envelopes for the Pearson residuals.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/47501
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Restrito
dc.subjectEstatística – Teses
dc.subjectAutocorrelação (Estatistica) – Teses
dc.subjectCópulas (Estatística matemática) – Teses
dc.subjectVerossimilhança (Estatistica) – Teses
dc.subjectMarkov, Processos de – Teses
dc.subject.otherAutocorrelação
dc.subject.otherCópula
dc.subject.otherEstimação em dois-estágios
dc.subject.otherIngarch
dc.subject.otherMáxima verossimilhança
dc.subject.otherPredição
dc.subject.otherProcessos de markov
dc.subject.otherSéries temporais inteiras
dc.titleProcessos de markov ponderado-gama e modelagem de séries temporais inteiras multivariadas via cópulas
dc.typeTese de doutorado
local.contributor.advisor-co1Sokol Ndreca
local.contributor.advisor1Wagner Barreto de Souza
local.contributor.advisor1Latteshttp://lattes.cnpq.br/8823986506327201
local.contributor.referee1Luiz Koodi Hotta
local.contributor.referee1Rodrigo Bernardo da Silva
local.contributor.referee1Roger William Câmara Silva
local.contributor.referee1Gabriela Oliveira
local.creator.Latteshttp://lattes.cnpq.br/0953322853179430
local.description.embargo2025-08-19
local.description.resumoNeste trabalho propomos a construção de dois modelos para séries temporais, motivados por aplicações do mercado financeiro. A primeira proposta é um processo de Markov para séries contínuas positivas, construído a partir de uma densidade de peso gama, o processo de Markov ponderado-gama (PG). O processo PG é estacionário, reversível no tempo e é definido a partir de sua densidade de transição. Investigamos a classe de distribuições GIG (Generalized Inverse Gaussian) e a distribuição gama como potenciais distribuições marginais para o processo, os quais retornaram vários resultados explícitos. A estimação dos parâmetros dos processos PG-GIG e PG-Ga foi realizada via método de máxima verossimilhança. Para avaliar o método inferencial proposto, realizamos um estudo de simulação Monte Carlo. Adicionalmente, realizamos um estudo empírico, a respeito do ajuste dos processos PG-GIG e PG-Ga aos dados de volatilidade realizada dos log-retornos das ações que compõe o índice FTSE 100, da bolsa de valores de Londres. Implementamos um exercício de \textit{pseudo previsão} e avaliamos o desempenho dos processos através de uma análise de resíduos, por meio de envelopes simulados, e verificamos a calibração do modelo com a construção de histogramas PIT (Probability Integral Transform). A segunda proposta é uma classe de modelos para análise de séries temporais inteiras multivariadas, construídos a partir da combinação da metodologia INGARCH (INteger valued Generalized AutoRegressive Conditional Heteroskedastic) com cópulas. O processo proposto é denotado por processo cópula-INGARCH (CINGARCH). As dinâmicas temporal e contemporânea (dependência cruzada das séries ajustadas ao modelo) são incorporadas ao processo através da metodologia INGARCH. Como potenciais distribuições condicionais, investigamos as distribuições Laplace discreta (LD) e Skellam. A estimação dos parâmetros dos processos LD-CINGARCH e Skellam-CINGARCH foi realizada via método de máxima verossimilhança em dois estágios. Para avaliar o método inferencial proposto, realizamos um estudo de simulação Monte Carlo. Ademais, a metodologia proposta foi usada para modelar conjuntamente a variação dos ticks da taxa de câmbio do euro para a libra esterlina (EUR/GBP) e do euro para o dólar americano (EUR/USD). Avaliamos a bondade de ajuste dos processos LD-CINGARCH e Skellam-CINGARCH marginalmente através da construção dos histogramas PIT e de envelopes simulados para os resíduos de Pearson.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE ESTATÍSTICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Estatística

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Processos de Markov Ponderado-Gama e Modelagem de Séries Temporais Inteiras Multivariadas via Cópulas.pdf
Tamanho:
12.22 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: