Ações de convergência de produtos livres

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Seja G um grupo nitamente gerado que possui uma a c~ao relativamente hiperb olica no conjunto de Cantor e seu conjunto P de representantes de subgrupos parab olicos e tal que todo elemento Pi 2 P e relativamente hiperb olico com respeito a um conjunto Pi ent~ao o grupo G e relativamente hiperb olico com respeito a S i Pi (consequ^encia de [10]) e sua fronteira de Bowditch, @B(G; S i Pi) depende apenas dos espa cos @B(Pi;Pi). Como caso especial, mostraremos que se G1; :::;Gn s~ao relativamente hiperb olicos ent~ao @B(G1 ::: Gn) depende topologicamente apenas dos espa cos @B(Gi) (em que omitimos os conjuntos parab olicos por simplicidade). Nosso resultado principal generaliza [18], em que s~ao caracterizadas as fronteiras hiperb olicas de produtos livres de grupos hiperb olicos. Entretanto, nossos m etodos s~ao diferentes dos usados em [18]

Abstract

Let G be a finitely generated group which has a relatively hyperbolic action on the Cantor set and its representative parabolic set P is such that every element Pi ∈ P is relatively hyperbolic with respect to a set Pi , then G is relatively hyperbolic with respect to S i Pi (consequence of [10]) and its Bowditch boundary, ∂B(G, S i Pi), depends only on the spaces ∂B(Pi,Pi). In particular, if G1, ..., Gn are relatively hyperbolic then ∂B(G1 ∗ ... ∗ Gn) only depends, topologically, of the spaces ∂B(Gi) (where we omitted for simplicity the parabolic sets). Our main result generalizes [18] where the hyperbolic boundaries of free products of hyperbolic groups are characterized. However, our methods are entirely different from that of (18).

Assunto

Matemática - Teses, Espaços topologicos, Espaços uniformes, Topologia

Palavras-chave

Matemática

Citação

Departamento

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto