Shooting methods for parameter estimation of output error models

dc.creatorAntônio Horta Ribeiro
dc.creatorLuis Antonio Aguirre
dc.date.accessioned2025-03-26T16:00:20Z
dc.date.accessioned2025-09-09T00:52:56Z
dc.date.available2025-03-26T16:00:20Z
dc.date.issued2017
dc.identifier.doihttps://doi.org/10.1016/j.ifacol.2017.08.2421
dc.identifier.urihttps://hdl.handle.net/1843/80956
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartof20th IFAC World Congress
dc.rightsAcesso Restrito
dc.subjectSistemas lineares
dc.subjectÁlgebra linear
dc.subjectAnálise de variância
dc.subjectControle de qualidade -- Métodos estatisticos
dc.subject.otherMultiple shooting, output error models, simulation error minimization, nonlinear least-squares
dc.titleShooting methods for parameter estimation of output error models
dc.typeArtigo de evento
local.citation.epage14568
local.citation.spage14563
local.description.resumoThis paper studies parameter estimation of output error (OE) models. The commonly used approach of minimizing the free-run simulation error is called single shooting in contrast with the new multiple shooting approach proposed in this paper, for which the free-run simulation error of sub-datasets is minimized subject to equality constraints. The names “single shooting” and “multiple shooting” are used due to the similarities with techniques for estimating ODE (ordinary differential equation) parameters. Examples with nonlinear polynomial models illustrate the advantages of OE models as well as the capability of the multiple shooting approach to avoid undesirable local minima.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://www.sciencedirect.com/science/article/pii/S2405896317332469

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: