Problemas elípticos com expoente crítico e potencial de Hardy

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Grey Ercole
Hamilton Prado Bueno

Resumo

Nesta dissertação estudamos resultados de existência e de não-existência de soluções para a seguinte classe de problemas elípticos não-lineares:em que RN denota um conjunto aberto contendo a origem, limitado ou não, com N > 4. A equação diferencial envolve o expoente 2 = 2N/(N - 2), conhecido como expoente crítico de Sobolev e o termo uu(x)/jxj2, que é chamado potencial de Hardy. Procuramos soluções para o problema (P) no espaço de Sobolev H1 0 () definido como o fecho de C¥ 0 () em H1(). Para obter resultados de existência de soluções demonstramos uma versão do Lema de Concentração-Compacidade de Lions.

Abstract

In this dissertation we study results of existence and non-existence for the following class of nonlinear elliptic problems: where RN denotes an open set containing the origin, bounded or not, with N > 4. The equation involves the exponent 2 = 2N/(N - 2), known as critical exponent in the Sobolev inequality, and the term mu(x)/jxj2, which is called Hardy potential. We look for solutions of the problem (P) in the Sobolev space H1 0 () which is defined as is the closure of C¥ 0 () in H1(). To obtain existence results we prove a version of theconcentration-compactness lemma by Lions.

Assunto

Matemática, Equações diferenciais elipticas

Palavras-chave

Operador laplaciano, Problemas de minimização, Potenciais de Hardy, Expoente crítico de Sobolev

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por