Problemas elípticos com expoente crítico e potencial de Hardy
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Grey Ercole
Hamilton Prado Bueno
Hamilton Prado Bueno
Resumo
Nesta dissertação estudamos resultados de existência e de não-existência de soluções para a seguinte classe de problemas elípticos não-lineares:em que RN denota um conjunto aberto contendo a origem, limitado ou não, com N > 4. A equação diferencial envolve o expoente 2 = 2N/(N - 2), conhecido como expoente crítico de Sobolev e o termo uu(x)/jxj2, que é chamado potencial de Hardy. Procuramos soluções para o problema (P) no espaço de Sobolev H1 0 () definido como o fecho de C¥ 0 () em H1(). Para obter resultados de existência de soluções demonstramos uma versão do Lema de Concentração-Compacidade de Lions.
Abstract
In this dissertation we study results of existence and non-existence for the following class of nonlinear elliptic problems: where RN denotes an open set containing the origin, bounded or not, with N > 4. The equation involves the exponent 2 = 2N/(N - 2), known as critical exponent in the Sobolev inequality, and the term mu(x)/jxj2, which is called Hardy potential. We look for solutions of the problem (P) in the Sobolev space H1 0 () which is defined as is the closure of C¥ 0 () in H1(). To obtain existence results we prove a version of theconcentration-compactness lemma by Lions.
Assunto
Matemática, Equações diferenciais elipticas
Palavras-chave
Operador laplaciano, Problemas de minimização, Potenciais de Hardy, Expoente crítico de Sobolev