Fluxo de Ricci: existência, estimativas de curvatura, compacidade de Hamilton e aplicação

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Emerson Alves Mendonça de Abreu
Mauricio Barros Correa Junior

Resumo

Neste trabalho estudamos o fluxo de Ricci dada por Hamilton abordando existência e unicidade, obtendo assim uma solução definida em um intervalo de tempo, em seguida, dar algumas estimativasde Bernstein-Bando-Shi, onde será demonstrado que a norma da curvatura de Riemann explode num tempo finito. Depois estudaremos a noção de convergência dado por Cheeger e Gromov devariedades Riemannianas pontuadas para enunciar o teorema de compacidade de Hamilton dando assim uma demonstração da conjectura de Poincaré no caso em que o tensor de Ricci é positivo.

Abstract

In this work we study the Ricci ow given by Hamilton addressing existence and uniqueness, thus obtaining a solution defined in a time interval, then give some estimates of Bernstein-Bando-Shi,which will be shown that the norm of the Riemann curvature explodes a finite time. Then we study the notion of convergence given by Cheeger and Gromov of pointed Riemannian manifolds for state the compactness theorem of Hamilton thus giving a demonstration of the Poincaré conjecture in the case where the Ricci tensor is positive.

Assunto

Matemática, Geometria riemaniana, Singularidades (Matemática), Fluxo de Ricci

Palavras-chave

compacidade, estimativas de curvatura

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por