Automatic detection of insect predation through the segmentation of damaged leaves
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
Leveraged by the production of grains, oilseeds, and fresh deciduous fruits, food production has reached new heights, exceeding the amount produced in previous years and with an estimate of new records for the coming years. In this sense, technological advances are essential to reduce costs and increase quality and productivity. In this paper, we present a novel method to detect insect predation on plant leaves that uses geometric leaf properties and digital image processing techniques to construct image models. Unlike other approaches, our method detects and highlights the regions of leaves attacked by insects and segments the contours of insect bites. We evaluated our proposal considering 12 crucial crops for the world market, and it demonstrated to be effective, even in the presence of noise, image scale, and rotation. Besides, it identifies insect predation areas regardless of the plant species with precision above 90%
in blueberry, corn, potato, and soybean leaves. Thus, this proposal introduces a new approach to automatic leaf analysis and contributes to reducing human effort in identifying the occurrence of pests. The code prepared by the authors is publicly available.
Abstract
Assunto
Folhas -- Anatomia, Insetos como agentes de controle biológico de pragas, Inteligência computacional, Produtividade agrícola
Palavras-chave
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S2772375522000211