A new fault classification approach applied to Tennessee Eastman benchmark process
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
This study presents a data-based methodology for fault detection and isolation in dynamic systems based on fuzzy/Bayesian approach for change point detection associated with a hybrid immune/neural formulation for pattern classification applied to the Tennessee Eastman benchmark process. The fault is detected when a change occurs in the signals from the sensors and classified into one of the classes by the immune/neural formulation. The change point detection system is based on fuzzy set theory associated with the Metropolis–Hastings algorithm and the classification system, the main contribution of this paper is based on a representation which combines the ClonALG algorithm with the Kohonen neural network.
Abstract
Assunto
Engenharia elétrica, Algoritmos, Redes neurais (Computação), Benchmarking (Administração)
Palavras-chave
Classificação de falhas, Detecção de Falhas, Diagnóstico de Falhas, Abordagem Imunoinspirada, Abordagem Fuzzy/Bayesiana, Inteligência Computacional
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S1568494616304343#!