A new fault classification approach applied to Tennessee Eastman benchmark process

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This study presents a data-based methodology for fault detection and isolation in dynamic systems based on fuzzy/Bayesian approach for change point detection associated with a hybrid immune/neural formulation for pattern classification applied to the Tennessee Eastman benchmark process. The fault is detected when a change occurs in the signals from the sensors and classified into one of the classes by the immune/neural formulation. The change point detection system is based on fuzzy set theory associated with the Metropolis–Hastings algorithm and the classification system, the main contribution of this paper is based on a representation which combines the ClonALG algorithm with the Kohonen neural network.

Abstract

Assunto

Engenharia elétrica, Algoritmos, Redes neurais (Computação), Benchmarking (Administração)

Palavras-chave

Classificação de falhas, Detecção de Falhas, Diagnóstico de Falhas, Abordagem Imunoinspirada, Abordagem Fuzzy/Bayesiana, Inteligência Computacional

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S1568494616304343#!

Avaliação

Revisão

Suplementado Por

Referenciado Por