Mental disorder detection from social media through deep learning

dc.creatorAndré Hermenegildo Costa Silva
dc.date.accessioned2019-08-09T14:03:35Z
dc.date.accessioned2025-09-08T23:10:05Z
dc.date.available2019-08-09T14:03:35Z
dc.date.issued2016-04-05
dc.description.abstractMental disorder problems has been cause for concern around the world. An estimated 54 million Americans suffer from some form of mental disorder in a given year. Nowadays, people discuss and talk about the most diverse topics in social media platforms, including their health. This results in a stream of health-related data, and psychiatrists and doctors, as well as health insurance companies, are increasingly interested in exploring this kind of data. In this work, we devise algorithms to identify mental disorder problems associated with users of online social medias by examining text posted by them.
dc.identifier.urihttps://hdl.handle.net/1843/ESBF-AL6JTZ
dc.languageInglês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMidia social
dc.subjectAprendizado profundo
dc.subjectComputação
dc.subjectAprendizado de máquina
dc.subjectTranstornos mentais
dc.subject.otherTranstornos Mentais
dc.subject.otherAnálise de Sentimentos
dc.subject.otherAprendizado de Máquina
dc.subject.otherAprendizado Profundo
dc.subject.otherMídias Sociais
dc.titleMental disorder detection from social media through deep learning
dc.typeDissertação de mestrado
local.contributor.advisor1Adriano Alonso Veloso
local.contributor.referee1Cilene Aparecida Nunes Rodrigues
local.contributor.referee1Nivio Ziviani
local.contributor.referee1Pedro Olmo Stancioli Vaz de Melo
local.description.resumoTranstornos mentais têm sido motivo de preocupação ao redor do mundo. Estima-se que 54 milhões de americanos sofrem de algum tipo de transtorno mental em um determinado ano. Hoje em dia, as pessoas discutem e falam sobre os mais diversos assuntos nas mídias sociais, inclusive sobre saúde, resultando em uma massiva quantidade de dados a respeito. Com isso, psiquiatras e médicos, bem como empresas de planos de saúde, estão mais e mais interessados em explorar tais tipos de dados. Recentes estudos têm focado na caracterização de saúde mental em mídias sociais e no desenvolvimento de modelos estatísticos de previsão utilizando atributos derivados de forma manual para diagnosticar o estado de saúde mental de um determinado indivíduo. No entanto, na maioria dos casos, tais atributos não são capazes de capturar informações sobre transtornos mentais em dados textuais. Neste trabalho, nós propomos algoritmos para identificar problemas de transtorno mental associados com usuários de mídias socias por meio dos textos publicados por eles. Nós desenvolvemos arquiteturas de redes neurais convolutivas para aprender representações vetoriais de textos, considerando as informações de transtorno mental presente nestes textos, levando a um método chamado Disorder-Specific Embedding (DSE). Nós realizamos vários experimentos e concluímos que as representações vetoriais fornecidas pelo DSE superam os baselines considerados. Outro algoritmo proposto neste trabalho chama-se Hidden Subject Discovery (HSD). Consiste em um método para descobrir comunidades e, consequentemente, assuntos implícitos dentro destas comunidades, considerando um grupo de usuários com o mesmo transtorno mental. Por meio do HSD, foi possível encontrar padrões ocultos em dados textuais de um determinado transtorno mental, bem como descobrir assuntos e temas implícitos em cada comunidade.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
andrehermenegildocostasilva.pdf
Tamanho:
11.19 MB
Formato:
Adobe Portable Document Format