Graded manifolds of type Δ and n-fold vector bundles

dc.creatorElizaveta Vishnyakova
dc.date.accessioned2021-08-19T22:07:51Z
dc.date.accessioned2025-09-09T00:18:12Z
dc.date.available2021-08-19T22:07:51Z
dc.date.issued2019-02
dc.description.sponsorshipFAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.identifier.doihttps://doi.org/10.1007/s11005-018-1105-9
dc.identifier.issnElectronic ISSN 1573-0530 - Print ISSN 0377-9017
dc.identifier.urihttps://hdl.handle.net/1843/37638
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofLetters in Mathematical Physics
dc.rightsAcesso Restrito
dc.subjectSupervariedades (Matemática)
dc.subjectLie, Superálgebras de
dc.subjectCampos vetoriais
dc.subject.otherGraded manifold
dc.subject.otherLie algebroid
dc.subject.otherDouble vector bundle
dc.titleGraded manifolds of type Δ and n-fold vector bundles
dc.typeArtigo de periódico
local.citation.epage293
local.citation.issue2
local.citation.spage243
local.citation.volume109
local.description.resumoVector bundles and double vector bundles, or twofold vector bundles, arise naturally for instance as base spaces for algebraic structures such as Lie algebroids, Courant algebroids and double Lie algebroids. It is known that all these structures possess a unified description using the language of supergeometry and Z-graded manifolds of degree ≤2. Indeed, a link has been established between the super and classical pictures by the geometrization process, leading to an equivalence of the category of Z-graded manifolds of degree ≤2 and the category of (double) vector bundles with additional structures. In this paper we study the geometrization process in the case of Zr-graded manifolds of type Δ, where Δ is a certain weight system and r is the rank of Δ. We establish an equivalence between a subcategory of the category of n-fold vector bundles and the category of graded manifolds of type Δ.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE MATEMÁTICA
local.publisher.initialsUFMG
local.url.externahttps://link.springer.com/article/10.1007/s11005-018-1105-9

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: