Regionalização bayesiana de vazões mínimas em condições de não estacionariedade
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Carlos Henrique Ribeiro Lima
Francisco Eustáquio Oliveira e Silva
Luiz Rafael Palmier
Francisco Eustáquio Oliveira e Silva
Luiz Rafael Palmier
Resumo
A água tem se tornado cada vez mais um ativo de interesse para a sociedade devido ao aumento da demanda hídrica. A gestão de recursos hídricos, por meio de estabelecimentos de outorga, torna-se uma ferramenta importante para evitar conflitos e garantir o uso sustentável da água. O sistema de monitoramento de vazões é limitado a poucos postos de medição e, portanto, hidrólogos frequentemente recorrem a técnicas de regionalização para fazer estimativas em bacias não monitoradas. Nesse contexto, estimativas regionais de vazões mínimas de referência, indicadores para outorgas, e sua incerteza preditiva tornam-se objeto de interesse.
Este estudo visou desenvolver um modelo hierárquico Bayesiano para regionalização de vazões mínimas condicionado à covariáveis temporais, no caso, à temperatura da superfície do mar (TSM) e avaliar os benefícios dessa abordagem frente a um modelo estacionário de referência. Partindo de um modelo estacionário mais simples, sob a hipótese de independência espacial dos parâmetros e de independência condicional das observações, a representação da variabilidade espacial do modelo foi inicialmente capturada por meio de covariáveis espaciais. Posteriormente, foram investigados os possíveis ganhos na predição por meio do aprofundamento da descrição espacial sob os dados e sob o processo. Em seguida, a TSM foi introduzida no nível do processo do modelo sob a forma de um índice climático customizado, inferido a partir de um campo de valores de TSM. Foram elaborados modelos que avaliassem a inclusão do índice climático customizado nos parâmetros da distribuição de probabilidade empregada.
O modelo foi aplicado na bacia do rio Itajaí-Açu (SC) e na bacia do rio Doce (MG/ES). Os resultados mostraram que o modelo não estacionário apresentou melhor desempenho, em termos do critério DIC, do que o modelo estacionário de referência e que os quantis estimados (como a Q7,10) são fortemente influenciados pela variabilidade climática. Além disso, uma descrição mais complexa da dependência espacial do processo traz benefícios para a predição em regiões densamente monitoradas, enquanto a interdependência nas observações dos dados, quando considerada, pode também trazer benefícios para a predição.
Abstract
Water has increasingly become an asset of interest to society due to the increase in
water demand. The management of water resources, by means of grant
establishments, becomes an important tool to avoid conflicts and guarantee the
sustainable use of water. The streamflow monitoring system is limited to a few
measurement gages and, therefore, hydrologists often use regionalization techniques
to make estimates in unmonitored basins. In this context, regional estimates of low
flows, grant indicators, and their predictive uncertainty become object of interest.
This study aimed to develop a Bayesian hierarchical model for regionalization of low
flows conditioned to temporal covariables, in this case, the sea surface temperature
(SST) and to evaluate the benefits of this approach compared to a stationary reference
model. Starting from a simpler stationary model, under the hypothesis of spatial
independence of the parameters and conditional independence of the observations,
the representation of the spatial variability of the model was initially captured by means
of spatial covariates. Subsequently, possible gains in prediction were investigated by
further describing the spatial description under the data and under the process. Then,
the SST was introduced at the process level of the model in the form of a customized
climate index, inferred from a field of SST values. Models were developed to assess
the inclusion of the customized climate index in the parameters of the probability
distribution employed.
The model was applied in the Itajaí-Açu river basin (SC) and in the Doce river basin
(MG / ES). The results showed that the non-stationary model performed better, in terms
of the DIC criterion, than the reference stationary model and that the estimated
quantiles (such as Q7,10) are strongly influenced by climatic variability. In addition, a
more complex description of the spatial dependence of the process brings benefits to
prediction in densely monitored regions, while interdependence in data observations,
when considered, can also bring benefits to prediction.
Assunto
Engenharia sanitária, Recursos hídricos - Desenvolvimento, Teoria bayesiana de decisão estatística, Secas
Palavras-chave
Modelo hierárquico Bayesiano, Regionalização, Vazão mínima, Não estacionariedade
Citação
Departamento
Endereço externo
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
