Curvas racionais com singularidades hiperelíticas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

André Luis Contiero
Letterio Gatto
Lia Feital Fusaro
Marcelo Escudeiro Hernandes

Resumo

Neste trabalho, estudamos curvas racionais singulares no espaço projetivo, deduzindo condições de suas parametrizações e semigrupos de valores associados a suas singularidades. Aqui, focamos em curvas racionais com cúspides cujos semigrupos são do tipo hiperelítico. Provamos que a variedade de (parametrizações de) curvas racionais de grau fixo d suficientemente grande em P^n com uma única cúspide hiperelítica de gênero g é sempre de codimensão pelo menos (n−1)g dentro do espaço de aplicações holomorfas P^1 → P^n de grau d; e quando g é pequeno, esse limite é exato e o espaço correspondente é formado por estratificações unirracionais indexadas por perfis de ramificação fixos. Também fornecemos evidências para uma generalização conjectural desse fato no caso em que as curvas racionais tem cúspide cujo semigrupo de valores associado S é arbitrário, e fornecemos evidências para essa conjectura sempre que S for semigrupo γ-hiperelítico de peso mínimo ou peso máximo. Finalmente, obtivemos limites superiores sobre a gonalidade das curvas racionais com cúspides hiperelíticas, bem como descrições qualitativas de seus modelos canônicos.

Abstract

In this work we study singular rational curves in projective space, deducing conditions on their parameterizations from the value semigroups of their singularities. Here we focus on rational curves with cusps whose semigroups are of hyperelliptic type. We prove that the variety of (parameterizations of) rational curves of sufficiently large fixed degree d in P^n with a single hyperelliptic cusp of delta-invariant g is always of codimension at least (n−1)g inside the space of degree-d holomorphic maps P^1 → P^n; and that when g is small, this bound is exact and the corresponding space of maps is paved by unirational strata indexed by fixed ramification profiles. We also provide evidence for a conjectural generalization of this picture for rational curves with cusps of arbitrary value semigroup S, and provide evidence for this conjecture whenever S is a γ-hyperelliptic semigroup of either minimal or maximal weight. Finally, we obtain upper bounds on the gonality of rational curves with hyperelliptic cusps, as well as qualitative descriptions of their canonical models.

Assunto

Matemática - Teses, Curvas algébricas - Teses, Curvas racionais singulares - Teses, Curvas hiperelíticas - Teses

Palavras-chave

Curvas racionais singulares, Curvas hiperelíticas, Curvas γ-hiperelíticas, Gonalidade.

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por