Método Scan flexível para detecção em árvores hierárquicas
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Fábio Prates Machado
Sabino Jose Ferreira Neto
Sabino Jose Ferreira Neto
Resumo
Esse trabalho apresenta um deficiente algoritmo de varredura para bancos de dados hierárquicos que podem ser representados na forma de árvores. O algoritmo procura através dos galhos da árvore e é capaz de agregar folhas em diferentes galhos. A varredura procura por um cluster candidato através da estatística Minimum Description Length (MDL). A estatística de teste combina o logaritmo da razão de verossimilhança e a quantidade de informação necessária para representar internamente o cluster. Esse segundo termo controla os graus de liberdade do algoritmo de busca. Fazendo isso, a metodologia previne o acréscimo de folhas que desnecessariamente aumentem o termo do logaritmo da razão de verosimilhança. Resultados mostram que a metodologia MDL é um algoritmo flexível capaz de detectar clusters em bancos de dados hierárquicos nos quais os elementos do cluster estão distribuídos pela árvore. Dessa forma, o algoritmo explora grupos de cluster que não são explícitos simplesmente olhando para cortes nos galhos ou em analises combinatórias dos dados fornecidos.
Abstract
Assunto
Estatística
Palavras-chave
Árvores, Scan, Método