Nonparametric dependence modelling for space-time cluster detection

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Ricardo Hiroshi Caldeira Takahashi
Roberto da Costa Quinino
Gladston Juliano Prates Moreira
André Luiz Fernandes Cançado
Denise Burgarelli Duczmal

Resumo

Estruturas de dependência são estudadas exaustivamente em diversas aplicações. Nesta tese, uma nova metodologia para a detecção de clusters, chamada de Distância Ponderada de Voronoi, é apresentada levando em consideração não somente a localização dos pontos, mas também sua estrutura temporal. Usando o espaço de variáveis ao invés da localização geográfica, como em estatística espacial, e o toro em lugar do plano cartesiano, esta metodologia permite que o usuário aplique a ideia para um número maior de cenários alternativos. Em particular nos mercados financeiros, diferentes modelagens de dependência entre ativos podem levar a mudanças drásticas na alocação de recursos e a diferentes exposições a risco. Além disso, estas relações de dependência podem ser utilizadas como mecanismos para a detecção de crises financeiras mais rápidos que os modelos fundamentalistas, através do efeito contágio. Inicialmente, esta aplicação é realizada entre ativos de um mesmo mercado, o mercado americano, comparando a metodologia proposta com metodologias mencionadas na literatura como coeficientes lineares e copulas. Esta abordagem foi estendida para ativos de mercados distintos, a fim de se analisar a disseminação de crises financeiras entre diferentes mercados. Resultados obtidos através de simulações e aplicações com dados reais mostraram melhorias se comparados com abordagens clássicas, especialmente em períodos financeiros turbulentos.

Abstract

The dependence structures have been exhaustively studied in many applications. In this thesis, a new methodology for cluster detection is presented, i.e. the Weighted Voronoi Distance (WVD), taking into consideration not only the location of the points but also their time structure. Using variables space instead of geographical location as in spatial statistics and the torus instead of a regular Cartesian plane, this methodology allows the user to apply the rationale for more alternative scenarios. Particularly in financial markets, different dependence modelling among assets can lead to significant changes in asset allocation and different risk exposures. Besides, these dependence relationships can be used as mechanisms to detect financial crisis more quickly than fundamental models through the contagion effect. Initially, this application is run using assets from the same market, i.e. the US market, comparing the proposed methodology with methodologies mentioned in literature such as linear coefficients and copulas. This approach will be extended to assets from distinct markets in order to analyse the financial crisis dissemination across different markets. Results obtained from simulations and real data applications showed improvements compared to classical approaches especially in during turbulent financial periods.

Assunto

Estatística, Algoritmos de computador, Amostragem por conglomerados, Analise por conglomerados, Análise espacial (Estatística)

Palavras-chave

Efeito contágio, Cluster, Azulezamento, Algoritmo

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por