Existence and non-existence of solutions to problems involving conformal operators on sphere and hemisphere

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

Everaldo Souto de Medeiros
Gastão de Almeida Braga
Marcos da Silva Montenegro
Sérgio de Moura Almaraz

Resumo

In the work we prove the existence of constant solutions and the existence of an unbounded sequence of sign-changing solutions to a laplacian fractional and critical problem in the Euclidean space by reducing the initial problem to an equivalent problem on the Euclidean unit sphere and exploiting its symmetries.

Abstract

Neste trabalho, estudamos a existência e não existência de soluções não constantes para a seguinte equação A2su = f(u) in M, ∂u ∂ν = 0 on ∂M, e o sistema A2su1 = f1(u1, u2) in M, A2su2 = f2(u1, u2) in M, ∂u1 ∂ν = ∂u2 ∂ν = 0 on ∂M, onde M é a esfera unitaria ou semi-esfera canônica de dimensão n > 2 e A2s é o operador conforme fracionário ou intertwining para s ∈ (0, 1] ou s = 2. Sob certas condições de f, f1 e f2, vamos provar que as únicas soluções positivas dos problemas acima são constantes. As principais técnicas usadas são o método moving plane na forma integral e a geometria de M. Além disso, mostraremos que a equação possui in nitas soluções que mudam de sinal para qualquer s ∈ (0, 1). Neste trabalho, estudamos a existência e não existência de soluções não constantes para a seguinte equação A2su = f(u) in M, ∂u ∂ν = 0 on ∂M, e o sistema A2su1 = f1(u1, u2) in M, A2su2 = f2(u1, u2) in M, ∂u1 ∂ν = ∂u2 ∂ν = 0 on ∂M, onde M é a esfera unitaria ou semi-esfera canônica de dimensão n > 2 e A2s é o operador conforme fracionário ou intertwining para s ∈ (0, 1] ou s = 2. Sob certas condições de f, f1 e f2, vamos provar que as únicas soluções positivas dos problemas acima são constantes. As principais técnicas usadas são o método moving plane na forma integral e a geometria de M. Além disso, mostraremos que a equação possui in nitas soluções que mudam de sinal para qualquer s ∈ (0, 1).

Assunto

Matemática - Teses, Equações diferenciais não-lineares - Teses, Operador conforme fracionário - Teses, Equações parabólicas quase-lineares - Teses

Palavras-chave

Fractional conformal operator, Moving plane, Sign-changing solution

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por