Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae

dc.creatorRaquel M. Cadete
dc.creatorAlejandro Muñoz de Las Heras
dc.creatorAnders Sandström
dc.creatorCarla Ferreira
dc.creatorFrancisco Gírio
dc.creatorMarie-Françoise Gorwa-Grauslund
dc.creatorCarlos Augusto Rosa
dc.creatorCésar Fonseca
dc.date.accessioned2024-08-12T21:14:48Z
dc.date.accessioned2025-09-08T23:23:19Z
dc.date.available2024-08-12T21:14:48Z
dc.date.issued2016
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipFINEP - Financiadora de Estudos e Projetos, Financiadora de Estudos e Projetos
dc.description.sponsorshipFAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.format.mimetypepdf
dc.identifier.doi10.1186/s13068-016-0570-6
dc.identifier.issn2731-3654
dc.identifier.urihttps://hdl.handle.net/1843/73817
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofBiotechnology for Biofuels and Bioproducts
dc.rightsAcesso Aberto
dc.subjectSpathaspora passalidarum
dc.subjectSaccharomyces cerevisiae
dc.subjectXilose
dc.subjectNAD
dc.subjectBioetanol
dc.subject.otherSpathaspora species
dc.subject.otherSpathaspora passalidarum
dc.subject.otherSaccharomyces cerevisiae
dc.subject.otherXylose fermentation
dc.subject.otherNADH preferring xylose reductase
dc.subject.otherBioethanol
dc.subject.otherXYL1.2
dc.titleExploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae
dc.typeArtigo de periódico
local.citation.volume9
local.description.resumoBackground: The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylose-fermenting Saccharomyces cerevisiae. Novel xylose-fermenting yeasts species, as those from the Spathaspora clade, have been described and are potential sources of novel genes to improve xylose fermentation in S. cerevisiae. Results: Xylose fermentation by six strains from different Spathaspora species isolated in Brazil, plus the Sp. passalidarum type strain (CBS 10155T), was characterized under two oxygen-limited conditions. The best xylose-fermenting strains belong to the Sp. passalidarum species, and their highest ethanol titers, yields, and productivities were correlated to higher XR activity with NADH than with NADPH. Among the different Spathaspora species, Sp. passalidarum appears to be the sole harboring two XYL1 genes: XYL1.1, similar to the XYL1 found in other Spathaspora and yeast species and XYL1.2, with relatively higher expression level. XYL1.1p and XYL1.2p from Sp. passalidarum were expressed in S. cerevisiae TMB 3044 and XYL1.1p was confirmed to be strictly NADPH dependent, while XYL1.2p to use both NADPH and NADH, with higher activity with the later. Recombinant S. cerevisiae strains expressing XYL1.1p did not show anaerobic growth in xylose medium. Under anaerobic xylose fermentation, S. cerevisiae TMB 3504, which expresses XYL1.2p from Sp. passalidarum, revealed significant higher ethanol yield and productivity than S. cerevisiae TMB 3422, which harbors XYL1p N272D from Sc. stipitis in the same isogenic background (0.40 vs 0.34 g g−1CDW and 0.33 vs 0.18 g g−1 CDW h−1, respectively). Conclusion: This work explored a new clade of xylose-fermenting yeasts (Spathaspora species) towards the engineering of S. cerevisiae for improved xylose fermentation. The new S. cerevisiae TMB 3504 displays higher XR activity with NADH than with NADPH, with consequent improved ethanol yield and productivity and low xylitol production. This meaningful advance in anaerobic xylose fermentation by recombinant S. cerevisiae (using the XR/XDH pathway) paves the way for the development of novel industrial pentose-fermenting strains.
local.identifier.orcidhttps://orcid.org/0000-0003-2448-7063
local.publisher.countryBrasil
local.publisher.departmentICB - DEPARTAMENTO DE BOTÂNICA
local.publisher.departmentICB - DEPARTAMENTO DE MICROBIOLOGIA
local.publisher.initialsUFMG
local.url.externahttps://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-016-0570-6

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Exploring xylose metabolism in Spathaspora species_ XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.pdf
Tamanho:
715.5 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: