Teorema da massa positiva e desigualdade de Penrose para gráficos com bordo não compacto e o teorema de rigidez para hiperfícies semi-Einstein minimizantes de volume
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Rodney Josue Biezuner
Emerson Alves Mendonça de Abreu
Levi Lopes de Lima
Sérgio de Moura Almaraz
Emerson Alves Mendonça de Abreu
Levi Lopes de Lima
Sérgio de Moura Almaraz
Resumo
Provaremos o Teorema da Massa Positiva, não negatividade e rigidez, para hiperfícies gráficas, do Espaço Euclidiano, com bordo não compacto. Supondo que o gráfico seja esfericamente simétrico, verificaremos que a massa continuará não negativa mesmo semsupor que a curvatura escalar seja não negativa, e verificaremos que a rigidez da massa nula é estável. Sob condições adicionais, obteremos a Desigualdade de Penrose para tais hiperfícies gráficas com bordo não compacto. Por fim, obteremos um teorema de rigidez para hiperfícies semi-Einstein minimizantes de volume, o qual é uma generalização dosteoremas de Bray-Brendle-Neves, [8], e Barros et al., [5].
Abstract
We'll proof the Positive Mass Theorem, non negativity and rigidity, for graphical hypersurfaces, of the Euclidean Space, with non compact boundary. Supposing spherically symmetric graphical, we'll verify that the mass will keep non negative even without assuming scalar curvature non negative, and we'll verify that the rigidity of the null mass is stable. Under additional hypothesis, we'll obtain the Penrose's Inequality for suchgraphical hypersurfaces with non compact boundary. Finally, we'll obtain a theorem of rigidity for volume-minimizing semi-Einstein hypersurfaces, wich is a generalization of the Bray-Brendle-Neves' Theorem, [8], and Barros et al., [5].
Assunto
Matemática, Relatividade geral (Fisica), Variedades riemanianas, Fisica matemática
Palavras-chave
Matemática