Uma caracterização espectral para os H(r)-toros na esfera
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Marcos da Silva Montenegro
Emerson Alves Mendonça de Abreu
Luiz Fernando de Oliveira Faria
Maria de Andrade Costa e Silva
Silas Luiz de Carvalho
Emerson Alves Mendonça de Abreu
Luiz Fernando de Oliveira Faria
Maria de Andrade Costa e Silva
Silas Luiz de Carvalho
Resumo
Nesta tese obtemos algumas estimativas espectrais para caracterizar as hipersuperfícies de Clifford ou H(r)-toros na esfera S^n+1. O trabalho foi divido em duas partes. Na primeira parte consideramos hipersuperfícies fechadas em S^n+p com p ≥ 1. Inicialmente, provamos que as únicas superfícies que maximizam o segundo autovalor forte do operador de Jacobi em S^p+2 são os toros mínimos de Clifford, para isso usamos uma técnica baseada no uso de aplicações conformes. Em seguida usamos a mesma técnica para provar que a estimativa é verdadeira para o caso geral, supondo uma hipótese sobre a curvatura escalar. Finalizando a primeira parte, estudamos uma conjectura de classificacão de hipersuperfícies não totalmente geodésicas em S^n+1. Na segunda parte estudamos o caso de hipersuperfícies com curvatura média constante (H ̸= 0). Começamos provando um resultado de comparação entre os autovalores do operador de Jacobi e os autovalores do Laplaciano de Hodge, agindo em 1-formas, em seguida usamos essa mesma técnica agindo desta vez em formas harmônicas para provar que o índice de Morse para hipersuperfícies com curvatura média constante fechadas em S^n+1 é limitado inferiormente por uma função linear do primeiro número de Betti. Finalizamos mostrando uma caracterização para os H(r)-toros via o primeiro autovalor fraco do operador de Jacobi.
Abstract
In this thesis we obtain some spectral estimates to characterize the Clifford hypersurfaces or H(r)-torus in the sphere S^n+1. The work was divided into two parts. In the first part we consider hypersurfaces closed in S^n+p with p ≥ 1. Initially, we proved that the only surfaces that maximize the second strong eigenvalue of the Jacobi operator in S^p+2 are the minimal Clifford torus, for this we use a technique based on the use of conformal applications. Then we use the same technique to prove that the estimate is true for the general case, assuming a hypothesis about the scalar curvature. Finishing the first part, we study a conjecture of classification of hypersurfaces not totally geodesic in S^n+1. In the second part we study the case of hypersurfaces with constant mean curvature (H ̸= 0). We start by proving a result of comparison between the eigenvalues of the Jacobi operator and the eigenvalue of the Hodge Laplacian, acting in 1-forms, then we use this same technique acting this time in harmonic forms to prove that the Morse index for hypersurfaces with curvature constant mean closed at S^n+1 is bounded inferiorly by a linear function of the first Betti number. We conclude by showing a characterization for the H(r)-torus via the first weak eigenvalue of the Jacobi operator.
Assunto
Matemática – Teses, Superficies de curvatura constante – Teses, Autovalores – Teses, Morse, Teoria de – Teses, Jacobi, Metodos de – Teses
Palavras-chave
Superfície de curvatura média constante, Índice de Morse, Estabilidade, Autovalor forte e fraco, Operador de Jacobi, H(r)-toros