Analytic roughness prediction by deep rolling

dc.creatorB. Denkena
dc.creatorAlexandre Mendes Abrao
dc.creatorA. Krödel
dc.creatorKolja Meyer
dc.date.accessioned2023-07-26T17:22:08Z
dc.date.accessioned2025-09-08T23:51:44Z
dc.date.available2023-07-26T17:22:08Z
dc.date.issued2020-04-30
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1007/s11740-020-00961-0
dc.identifier.issn0944-6524
dc.identifier.urihttps://hdl.handle.net/1843/57014
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofProduction Engineering
dc.rightsAcesso Aberto
dc.subjectEngenharia de Materiais e Metalúrgica
dc.subjectTestes de dureza
dc.subjectTopografia
dc.subject.otherDeep rolling
dc.subject.otherSurface topography
dc.subject.otherRoughness
dc.subject.otherRoller burnishing
dc.titleAnalytic roughness prediction by deep rolling
dc.typeArtigo de periódico
local.citation.epage354
local.citation.issue3
local.citation.spage345
local.citation.volume14
local.description.resumoDeep rolling is a widely applied mechanical surface and subsurface treatment method. It is typically used after conventional machining to improve the roughness, increase the surface hardness and to induce compressive residual stresses. The main influence parameters on the surface topography are the applied deep rolling pressure, the ball diameter and the feed. In general, low feeds, larger ball diameters and higher pressures result in an even surface finish. However, an exact prediction of the roughness is not possible. Therefore, it is the aim of the presented research to find a generally applicable method for surface roughness prediction after deep rolling for a variety of steel and aluminum materials. It is shown that the surface topography can be predicted by an analytical model with high accuracy.
local.identifier.orcidhttps://orcid.org/0000-0003-2015-4077
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
local.publisher.departmentENGENHARIA - ESCOLA DE ENGENHARIA
local.publisher.initialsUFMG
local.url.externahttps://link.springer.com/article/10.1007/s11740-020-00961-0

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Analytic roughness prediction by deep rolling.pdf
Tamanho:
2.42 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: