Classificação das superfícies mínimas de índices de morse pequeno imersas nos espaços S^3 e S^2 X S^1

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Rodney Josue Biezuner
Emerson Alves Mendonça de Abreu

Resumo

O objetivo deste trabalho é discutir uma conjectura de classificação relativa ao índice de hipersuperfícies mínimas não totalmente geodésicas da esfera de n-dimensional de raio um Sn. Discuta-se resumidamente a teoria básica de subvariedades mínimas antes defocar nossa atenção para as subvariedades mínimas e hipersuperfices em Sn: Apresenta-se alguns resultados de Simons, os quais mostram que qualquer subvariedade mínima de Sn é inestável, e como as totalmente geodésicas Sk C Sn sãoo caracterizadas por seu índice. Emseguida, mostra-se a conjectura que afirma que as hipersuperficies de Clifford são também caracterizadas por seu índice de forma semelhante, os mais recentes desenvolvimentos relacionados à conjectura, e a prova de Urbano da conjectura para o caso especial quando n=3. Por último, apresenta-se o estudo da classificação das superfícies mínimas de índice de Morse pequeno na variedade produto S2 x S1(r).

Abstract

The purpose of this thesis is to discuss a conjecture classification concerning the index of non-totally geodesic minimal hypersurfaces of the n-dimensional standard sphere of radius one Sn. Briey discuss the basic theory of minimal submanifolds before focusing our attention to the minimal submanifolds and hypersurfaces of Sn. We present someresults of Simons which show that any minimal submanifolds of Sn is unstable, and how the totally geodesic Sk C Sn are characterized by their index. We then present a related conjecture which claims that the Clifford hypersurfaces are also characterized by their index in a similar way, discuss the most recent developments related to the conjecture,and give Urbano's proof of the conjecture for the special case when n=3. Finally, we have the ultimate goal of studying the classification of minimal surfaces of Morse small index in product varieties S2 x S1(r).

Assunto

Matemática, Geometria riemaniana, Subvariedade, Subvariedades, Hipersuperficies

Palavras-chave

hipersuperfícies mínimas, geodésicas

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por