Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo — a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed.

Abstract

Neste artigo, apresentamos uma nova metodologia para realizar a seleção de modelos bayesianos em modelos lineares com distribuições de cauda pesada. Consideramos uma mistura finita de distribuições para modelar uma variável latente onde cada componente da mistura corresponde a um modelo possível dentro da classe simétrica de distribuições normais independentes. Naturalmente, o modelo gaussiano é uma das possibilidades. Isso permite uma análise simultânea baseada na probabilidade posterior de cada modelo. A inferência é realizada através da cadeia de Markov Monte Carlo - um amostrador de Gibbs com etapas Metropolis-Hastings para uma classe de parâmetros. Exemplos simulados destacam as vantagens desta abordagem em comparação com uma análise segregada baseada em critérios de seleção de modelos escolhidos arbitrariamente. Exemplos com dados reais são apresentados e uma extensão da regressão linear censurada é introduzida e discutida.

Assunto

Estatística, Teoria bayesiana de decisão estatística, Modelos estatísticos

Palavras-chave

MCMC, Penalised complexity priors, Scale mixtures of normal, Slash, Student-t

Citação

Curso

Endereço externo

https://projecteuclid.org/journals/brazilian-journal-of-probability-and-statistics/volume-34/issue-1/Robust-Bayesian-model-selection-for-heavy-tailed-linear-regression-using/10.1214/18-BJPS417.full

Avaliação

Revisão

Suplementado Por

Referenciado Por