Qualitative analysis in many-objective optimization with visualization methods
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Análise qualitativa em otimização de muitos objetivos com métodos de visualização
Primeiro orientador
Membros da banca
Igor Coelho Machado
Rodrigo Tomas Nogueira Cardoso
Ricardo Hiroshi Caldeira Takahashi
Hossein Javedani Sadaei
Rodrigo Tomas Nogueira Cardoso
Ricardo Hiroshi Caldeira Takahashi
Hossein Javedani Sadaei
Resumo
Many-objective Optimization Problems present various challenges to the currentoptimization methods. Among these, the visualization gap is an important obstacle tothe interpretation of results. Having the ability of visualizing partial or final results ofa high-dimensional multi-objective problem provides key advantages to the optimizerand also to the decision-maker in terms of understanding the problem and interpretingresults. In this study, a multi-purposed visualization tool is proposed to be appliedin an evolutionary design process. The proposed visualization tool, named Visualiza-tion and Mapping on Arcs (VMA), contains two different parts and usabilities. VMAprovides two important categories of qualitative information from high-dimensionalspaces. The first part of tool maps the solutions from high-dimensional space into the2D forms based to extract the relationship between objectives. Then, the second part,maps the solutions from high-dimensional objective space into a 2D form of scatteringthat is based on norm and angle information. Meanwhile, it preserves some desirablecharacteristics of objective space, such as the shape of the Pareto front, its location,relations between objectives etc. With the support of this tool the decision-maker canobtain information about the shape of the Pareto front, the range of explored area bythe algorithms, qualitative estimation of algorithm performance, relation between ob-jectives, location of solutions and their dispersion. Furthermore, this application hasscalability and flexibility about the number of objectives and population size. Additionally, VMA allows the decision-maker to visually identify poorly explored regionsof the objective space and determine weight vectors to guide the search to a specificor preferred region. Finally, experimental results show that this tool can play a role ofperformance metric and help the evolutionary solving process.
Abstract
Problemas de otimização com muitos objetivos apresentam vários desafios para os métodos
de otimização atuais. Dentre essas, a visualização de soluções é um obstáculo importante
para a interpretação dos resultados. Ter a habilidade de visualizar resultados parciais ou
finais, de um problema multi-objetivo com várias dimensões, fornece vantagens chave para o
otimizador bem como para o tomador de decisões, com relação a compreensão do problema
e interpretação de resultados. Neste estudo, propõe-se uma ferramenta de visualização
multi-propósito a ser aplicada em um processo de design evolucionário. A ferramenta
de visualização proposta, denominada Visualização e Mapeamento em Arcos (VMA),
contém duas partes e utilizações diferentes. VMA fornece duas importantes categorias de
informação qualitativa sobre espaços de várias dimensões. A primeira parte da ferramenta
mapeia as soluções do espaço de alta dimensão para as formas 2D, com base na extração da
relação entre os objetivos. Em seguida, a segunda parte, mapeia as soluções do espaço de
objetivos de alta dimensionalidade em uma forma 2D de espalhamento, baseada na norma
e informações de ângulo entre os objetivos. A abordagem preserva algumas características
desejáveis do espaço de objetivos, como a forma da Fronteira Pareto, sua localização,
relações entre os objetivos, etc. Com o apoio desta ferramenta o decisor pode obter
informações sobre a forma da frente de Pareto, a área explorada pelos algoritmos, uma
estimativa qualitativa do desempenho do algoritmo, relação entre os objetivos, localização
das soluções e sua dispersão. Além disso, este aplicativo tem escalabilidade e flexibilidade
em relação ao número de objetivos e tamanho da população. Adicionalmente, o VMA
permite ao decisor identificar visualmente regiões pouco exploradas do espaço de objetivos
e determinar vetores de peso para guiar a busca por uma região específica ou preferida.
Finalmente, os resultados experimentais mostram que esta ferramenta pode desempenhar
um papel de métrica de desempenho e auxiliar o processo evolucionário de busca por
soluções.
Assunto
Engenharia elétrica, Otimização, Pesquisa qualitativa, Processo decisório, Visualização de dados
Palavras-chave
Data visualization, Many-objective optimization, Qualitative analysis, Quantitative analysis, Objective relationship, Multi criteria decision making, Individual distribution