Comparing volatility forecasting models during the global financial crisis

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Volatility estimation in financial markets has always been a challenge especially in time of crisis. Once asset prices and investment decisions are highly sensitive to such variable, many different models have been proposed in literature. This article estimates the volatility from a new family of stochastic volatility models called non-Gaussian State Space Models, a subclass of state space models where it is possible to compute exact likelihood. Volatilities of important Asian and Oceanian stock market indexes have been estimated and compared to APARCH model estimates. Results showed that non-Gaussian State Space Models outperformed significantly in both in-sample and forecasting cases.

Abstract

Assunto

Administração, Administração financeira

Palavras-chave

APARCH, Models Classical, Bayesian Inference, Heavy Tailed Distributions, Non-Gaussian state space model, Volatility Models

Citação

Curso

Endereço externo

doi:10.1080/03610918.2016.1152363

Avaliação

Revisão

Suplementado Por

Referenciado Por