An anatomy for neural search engines

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

In this work, we explore the application of modern deep learning techniques to build a neural model centric search engine. We conduct an in-depth discussion under several quantitative and qualitative criteria, comparing the trade-offs of adopting the proposed neural architecture against the successful and mature traditional information retrieval techniques. We show that a full neural architecture, which employs neural models both in the retrieval and ranking phases, offers good scalability, predictability and evolution properties, and discuss under which conditions one can achieve state-of-the-art results. We conclude that deep learning centric systems still require significant more effort to implement and deploy and demand more computational resources, but this work, together with several others in the research community, sheds a light into that path.

Abstract

Assunto

Redes neurais (Computação), Ciência da Computação

Palavras-chave

Information retrieval, Machine learning, Deep learning, Neural IR, Search engine

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S0020025518309952

Avaliação

Revisão

Suplementado Por

Referenciado Por