Magnetic field in a young circumbinary disk

dc.creatorFelipe de Oliveira Alves
dc.creatorJosep Miquel Girart
dc.creatorMarco Padovani
dc.creatorDaniele Galli
dc.creatorGabriel Armando Pellegatti Franco
dc.creatorPaola Caselli
dc.creatorWouter H. T. Vlemmings
dc.creatorQizhou Zhang
dc.creatorHelmut Wilfried Wiesemeyer
dc.date.accessioned2023-09-11T19:21:25Z
dc.date.accessioned2025-09-08T23:14:41Z
dc.date.available2023-09-11T19:21:25Z
dc.date.issued2018
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201832935
dc.identifier.issn1432-0746
dc.identifier.urihttps://hdl.handle.net/1843/58562
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofAstronomy & Astrophysics
dc.rightsAcesso Aberto
dc.subjectCampos magnéticos
dc.subjectEspalhamento
dc.subjectPolarização
dc.subject.otherMagnetic fields
dc.subject.otherPolarization
dc.subject.otherScattering
dc.subject.otherProtoplanetary disks
dc.titleMagnetic field in a young circumbinary disk
dc.typeArtigo de periódico
local.citation.epage8
local.citation.spage1
local.citation.volume616
local.description.resumoCONTEXT: Polarized continuum emission at millimeter-to-submillimeter wavelengths is usually attributed to thermal emission from dust grains aligned through radiative torques with the magnetic field. However, recent theoretical work has shown that under specific conditions polarization may arise from self-scattering of thermal emission and by radiation fields from a nearby stellar object. AIMS: We use multi-frequency polarization observations of a circumbinary disk to investigate how the polarization properties change at distinct frequency bands. Our goal is to discern the main mechanism responsible for the polarization through comparison between our observations and model predictions for each of the proposed mechanisms. METHODS: We used the Atacama Large Millimeter/submillimeter Array to perform full polarization observations at 97.5 GHz (Band 3), 233 GHz (Band 6) and 343.5 GHz (Band 7). The ALMA data have a mean spatial resolution of 28 AU. The target is the Class I object BHB07-11, which is the youngest object in the Barnard 59 protocluster. Complementary Karl G. Jansky Very Large Array observations at 34.5 GHz were also performed and revealed a binary system at centimetric continuum emission within the disk. RESULTS: We detect an extended and structured polarization pattern that is remarkably consistent between the three bands. The dis- tribution of polarized intensity resembles a horseshoe shape with polarization angles following this morphology. From the spectral index between Bands 3 and 7, we derived a dust opacity index β ∼ 1 consistent with maximum grain sizes larger than expected to produce self-scattering polarization in each band. The polarization morphology and the polarization levels do not match predictions from self-scattering. On the other hand, marginal correspondence is seen between our maps and predictions from a radiation field model assuming the brightest binary component as main radiation source. Previous molecular line data from BHB07-11 indicates disk rotation. We used the DustPol module of the ARTIST radiative transfer tool to produce synthetic polarization maps from a rotating magnetized disk model assuming combined poloidal and toroidal magnetic field components. The magnetic field vectors (i.e., the polarization vectors rotated by 90◦) are better represented by a model with poloidal magnetic field strength about three times the toroidal one. Conclusions: The similarity of our polarization patterns among the three bands provides a strong evidence against self-scattering and radiation fields. On the other hand, our data are reasonably well reproduced by a model of disk with toroidal magnetic field components slightly smaller than poloidal ones. The residual is likely to be due to the internal twisting of the magnetic field due to the binary system dynamics, which is not considered in our model.
local.identifier.orcidhttps://orcid.org/0000-0002-7945-064X
local.identifier.orcidhttps://orcid.org/0000-0002-3829-5591
local.identifier.orcidhttps://orcid.org/0000-0003-2303-0096
local.identifier.orcidhttps://orcid.org/0000-0001-7706-6049
local.identifier.orcidhttps://orcid.org/0000-0003-2020-2649
local.identifier.orcidhttps://orcid.org/0000-0003-1481-7911
local.identifier.orcidhttps://orcid.org/0000-0002-2700-9916
local.identifier.orcidhttps://orcid.org/0000-0003-2384-6589
local.identifier.orcidhttps://orcid.org/0000-0002-5135-8657
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://www.aanda.org/articles/aa/full_html/2018/08/aa32935-18/aa32935-18.html

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Magnetic field in a young circumbinary disk.pdf
Tamanho:
1.93 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: