Fixed-wing UAV motion planning and optimal control for curve tracking

dc.creatorLeonardo Anício Alves Pereira
dc.date.accessioned2021-04-14T19:07:58Z
dc.date.accessioned2025-09-09T01:19:03Z
dc.date.available2021-04-14T19:07:58Z
dc.date.issued2021-02-26
dc.description.abstractÀ medida que o uso de veículos aéreos não tripulados (VANTs) vem aumentando, novas técnicas de planejamento de movimento, navegação e controle são desenvolvidas. Aplicações militares e civis geralmente requerem que um VANT seja capaz de estimar sua própria pose, processar as informações fornecidas pelo ambiente e seguir uma determinada trajetória de forma autônoma. Além disso, algumas tarefas como vigilância, mapeamento de terreno e proteção de comboio exigem uma longa vida útil em termos de consumo de energia. Nestas situações, o uso de um VANT de asa-fixa é altamente recomendado devido à sua maior autonomia quando comparado aos VANTs de asa rotativa. Este trabalho apresenta uma solução para o problema de guiar e controlar um VANT de asa-fixa para seguir uma curva fechada enquanto desvia de obstáculos dinâmicos. A estratégia proposta pode ser dividida em duas partes. Em uma camada superior é utilizada uma estratégia de campos vetoriais que alterna entre duas formas: um campo vetorial para convergir e circular a curva alvo, e um para desviar dos obstáculos no caminho do VANT. Para a camada inferior é proposto um controle de linearização por realimentação, onde a lei de controle auxiliar é projetada através de um MPC (Model Predictive Control) linear para fazer com o que o VANT siga as referências fornecidas pelos campos vetoriais. Simulações utilizando Matlab e o modelo completo do VANT, com 6 graus de liberdade e 12 estados, demonstram a eficiência da estratégia proposta para diferentes cenários. Resultados obtidos utilizando um sistema computacional embarcado demonstram que a estratégia proposta é factível de implementação em uma plataforma física.
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.description.sponsorshipINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)
dc.description.sponsorshipFAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.identifier.urihttps://hdl.handle.net/1843/35699
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pt/
dc.subjectEngenharia elétrica
dc.subjectAeronave não tripulada
dc.subjectControle preditivo
dc.subjectCampos vetoriais
dc.subject.otherFixed-wing UAV
dc.subject.otherModel predictive control
dc.subject.otherVector fields
dc.subject.otherMotion planning
dc.subject.otherCurve tracking
dc.subject.otherObstacle avoidance
dc.titleFixed-wing UAV motion planning and optimal control for curve tracking
dc.title.alternativePlanejamento de movimento e controle de ótimo de VANT de asa-fixa para rastreamento de curva
dc.typeDissertação de mestrado
local.contributor.advisor-co1Guilherme Vianna Raffo
local.contributor.advisor1Luciano Cunha de Araújo Pimenta
local.contributor.advisor1Latteshttp://lattes.cnpq.br/1331652492006790
local.contributor.referee1Vinícius Mariano Gonçalves
local.contributor.referee1Armando Alves Neto
local.contributor.referee1Rubens Junqueira Magalhães Afonso
local.creator.Latteshttp://lattes.cnpq.br/8119410040409696
local.description.resumoAs the use of unmanned aerial vehicles (UAVs) is increasing, new techniques for motion planning, navigation and control are being developed. Both military and civilian applications usually require a UAV to be able to estimate its own pose, process the information provided by the environment, and follow a given trajectory autonomously. Besides, some tasks such as surveillance, terrain mapping and convoy protection require long endurance. For those tasks, the use of a fixed-wing UAV is highly recommended due to its greater endurance when compared to rotary-wing UAVs. This work presents a strategy for solving the problem of guiding and controlling a UAV to follow a closed curve while avoiding dynamic obstacles. The proposed strategy can be divided into two parts. In a top layer, a vector field strategy is used which alternates between two forms: a vector field to converge to and circulate the target curve, and one to avoid obstacles along the UAV path. For a lower layer, a feedback linearization controller is proposed, in which a linear Model Predictive Control (MPC) is used as the auxiliary control law to make the UAV follow the references provided by the vector fields. Simulations using Matlab and the entire UAV model, with 6 degrees of freedom and 12 states, demonstrate the efficiency of the proposed strategy for different scenarios. Results obtained using an embedded computational system demonstrate that the proposed strategy is feasible to be implemented on a physical platform.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
DissertacaCorrigidavFinalPDFA.pdf
Tamanho:
17.54 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: