Autoregressive modeling of wrist attitude for feature enrichment in human activity recognition
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de evento
Título alternativo
Primeiro orientador
Membros da banca
Resumo
The use of time-series from wrist worn accelerometers for Human Activity Recognition is investigated in this work. We employ, as features, coefficients of two-dimensional multivariate/vector autoregressive (AR) models obtained from raw acceleration signals and from estimated wrist attitude roll and pitch angles. It is shown that the simultaneous use of both types of models improves the overall accuracy about 20% when compared to recently published algorithms where only univariate AR models coefficients for each raw acceleration signal are employed.
Abstract
Assunto
Inteligência artificial, Aprendizado do computador, Representação do conhecimento (Teoria da informação)
Palavras-chave
human activity recognition, Autoregressive models, SVM, wrist attitude
Citação
Departamento
Curso
Endereço externo
https://sbic.org.br/eventos/cbic_2017/cbic-paper-72/