Modelos estocásticos para leitores de jornais online

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Nivio Ziviani
Berthier Ribeiro de Araujo Neto
Edleno Silva de Moura
Rodrygo Luis Teodoro Santos

Resumo

Nessa dissertação estudamos o comportamento de usuários durante a leitura de artigos em jornais digitais. O estudo foi baseado em mais de 20 milhões de sessões compostas pelos clicks sucessivos por parte de um usuário em notícias postadas em 2 jornais online de grande porte no país. A motivação para este trabalho é que o entendimento acerca do comportamento da leitura sucessiva de artigos pode ajudar no desenvolvimento de sistemas de recomendação mais eficazes. A sessão de cada usuário foi reduzida à sequência dos tópicos das notícias lidas. Foram estudados 32 modelos estocásticos, divididos em cinco categorias: modelos Sem Influência do Passado; modelos de Memória Curta, em que apenas as leituras recentes afetam o futuro; modelos de Vantagem Cumulativa, nos quais leituras prévias de um tópico aumentam as chances de sua leitura no futuro; modelos de Preferência Revelada, onde o futuro é condicionado nas características de um tópico por vez, e modelos de Permanência Geométrica.

Abstract

The aim of this thesis is the study of the behavior of online users of digital newspapers. We analyzed more than 20 million sessions composed by users successive clicks in news posted in two large Brazilian online newspapers. The motivation for this work isthat understanding the sequence of topics reading behavior can help to design better recommendation systems. Each user session was reduced to the sequence of topics read. We analyzed 32 stochastic models, each one trying to capture the essence of the userbehavior. They are divided into five categories: models without past influence, those that totally disregard the information of the past; short memory models, where only the recent topics read affect the next one; preference revealed models which the future is conditioned on characteristics of a topic at a time; geometric permanence modelswhere the reading behavior is divided among the options of remaining on the current topic of reading following a geometric distribution and changing of topic according to some rules; and finally models of cumulative advantage, in which previous readings of a topic increase its readings chances in the future. The models are fitted by maximumlikelihood and compared according to goodness of fit and prediction power. The best models are those in which the user moves around the states influenced by his most recent readings. The cumulative advantage models were close behind, with slightly worse predictions but still quite satisfactory. We show how our findings can be explored for dynamically recommending online news to a user based on his clicks tracking in agiven reading session.

Assunto

Sistemas de recomendação, Processo estocástico, Computação

Palavras-chave

Modelagem do Comportamento de Usuários, Comportamento de Clicks, Modelos Estocásticos, Recomendação de Notícias

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por