The Good, The Fast And The Better Pedestrian Detector

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

David Menotti Gomes
Jefersson Alex dos Santos

Resumo

Detecção de pedestres é um bem conhecido problema em Visão Computacional, principalmente por causa de sua direta aplicação em vigilância, segurança de trânsito e robótica. Na última década, vários esforços foram realizados para melhorar a detecção em termos de acurácia, velocidade e aprimoramento de features. Neste trabalho, nós propomos e análisamos técnicas focando nesses pontos. Primeiramente, nós propomos uma precisa random forest oblíqua (oRF) associado com Partial Least Squares (PLS). O método consiste em utilizar o PLS para encontrar uma superfície de decisão em cada nó da árvore de decisão, que melhor divide as amostras apresentadas a ele, baseado em algum critério de pureza. Para mensurar as vantagens providas pelo PLS sobre a oRF, nós comparamos o método proposto com o oRF baseado no SVM. Em segundo lugar, nós avaliamos e comparamos abordagens de filtragens para reduzir o espaço de busca e manter somente potenciais regiões de interesse para ser apresentado para os detectores, acelerando o processo de detecção. Resultados experimentais demonstram que os filtros avaliados podem descartar um elevado número de janelas de detecção sem comprometer a acurácia. Por fim, nós propomos uma nova abordagem para extrair poderosas features em relação à cena. O método combina resultados de distintos detectores de pedestres reforçando as hipóteses humanas, enquanto que suprimindo um significante número de falsos positivos devido a falta de consenso espacial quando multiplos detectores são considerados. Nossa abordagem proposta, referida como Consenso Espacial (SC), supera todos os métodos state-of-the-art previamente publicados.

Abstract

Pedestrian detection is a well-known problem in Computer Vision, mostly because of its direct application in surveillance. In the past decade, several efforts have been performed to improve the detection in terms of accuracy, velocity and enhancement of features. In this work, we proposed and analyzed techniques focusing on these points. Firstly, we propose an oblique random forest associated with Partial Least Squares (PLS). The method consists on using the PLS to find a hyperplane at each decision tree node. Secondly, we evaluate filtering approaches to reduce the search space and keep only potential regions of interest in the scene. Finally, we propose an approach to combine distinct pedestrian detectors by reinforcing the human hypothesis whereas suppressing a significant number of false positives due to the lack of spatial consensus when multiple detectors are considered. Our proposed approach outperforms all previously published state-of-the-art methods.

Assunto

Visão por computador, Detecção de pedestres, Computação, Teoria da estimativa

Palavras-chave

Filtering Approaches, Fusion of Detectors, Partial Least Squares, Árvore de Decisão Oblíqua, Random Forest

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por