Existência e multiplicidade de soluções e existência de ground state para uma classe de problemas elípticos em RN com uma não linearidade geral

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Neste trabalho, provamos existência e multiplicidade de soluções radialmente simétricas para o problema $$(-\Delta_p)^s u=g(u) \ \ \textrm{ em } \ \ \mathbb{R}^N, \ \ u\in W^{s,p}(\mathbb{R}^N),$$ em que $s\in (0,1], \ 2 \leq p < \infty, \ sp \leq N, \ 2 \leq N \in \mathbb{N}$ e $(-\Delta_p)^s$ é o operador $p$-Laplaciano (fracionário se $0<s<1$). Ambos os casos foram tratados $sp=N$ e $sp<N.$ A não linearidade $g$ é uma função do tipo Berestycki-Lions com crescimento exponencial crítico se $sp=N$ e crescimento polinomial crítico se $sp<N$. Depois disso, decompondo o espaço $\mathbb{R}^N$ na forma $\mathbb{R}^M\times \mathbb{R}^M\times \mathbb{R}^{N-2M}$, provamos a existência de infinitas soluções não radialmente simétricas nos casos $N=4 $ ou $ N\geq 6$ e $N-2M \neq 1$, em que $M>0$ é inteiro e $0\leq M \leq N/2$. Provamos também a existência de uma solução ground state para o mesmo problema. Logo após, consideramos o problema $$\Delta^2 u=g(u) \ \ \textrm{ em } \ \ \mathbb{R}^N, \ \ u\in H^2(\mathbb{R}^N),$$ em que $4 \leq N \in \mathbb{N}$ e $\Delta^2$ é o operador bilaplaciano. Obtivemos os mesmos resultados estabelecidos acima. Finalmente, consideramos o problema $$(-\Delta)^s u=g(u) \ \ \textrm{ em } \ \ \mathbb{R}^N, \ \ u\in W^{s,2}(\mathbb{R}^N),$$ onde $s\in (1,2), \quad N\geq 3 $ e $(-\Delta)^s$ é o operador $2$-Laplaciano fracionário de ordem superior e, mais uma vez, obtivemos os mesmos resultados descritos no caso do operador $p$-Laplaciano fracionário.

Abstract

In this work, the existence of infinitely many radially symmetric solutions is proved for the problem $$(-\Delta_p)^s u=g(u) \ \ \textrm{ in } \ \ \mathbb{R}^N, \ \ u\in W^{s,p}(\mathbb{R}^N),$$ where $s\in (0,1], \ 2 \leq p < \infty, \ sp \leq N,\ 2 \leq N \in \mathbb{N}$ and $(-\Delta_p)^s$ is the (fractional if $0<s<1$) $p$-Laplacian operator. Both the cases were handled $sp=N$ and $sp<N.$ The nonlinearity $g$ was a function of Berestycki-Lions type with critical exponential growth if $sp=N$ and critical polynomial growth if $sp<N$. After that, decomposing the space $\mathbb{R}^N$ in the form $\mathbb{R}^M\times \mathbb{R}^M\times \mathbb{R}^{N-2M}$, we prove the existence of infinitely many nonradially symmetric solutions in the cases $N=4 $ or $ N\geq 6$ and $N-2M \neq 1$, on that $M>0$ is integer and $0\leq M\leq N/2$. We also prove the existence of a ground state solution for the same problem. Next, we consider the problem $$\Delta^2 u=g(u) \ \ \textrm{ in } \ \ \mathbb{R}^N, \ \ u\in H^2(\mathbb{R}^N),$$ where $N = 4$ and $\Delta^2$ is the bilaplacian operator. We obtain the same results stated above. Finally, we consider the problem $$(-\Delta)^s u=g(u) \ \ \textrm{ in } \ \ \mathbb{R}^N, \ \ u\in W^{s,2}(\mathbb{R}^N),$$ where $s\in (1,2), \quad N\geq 3 $ and $(-\Delta)^s$ is the higher order fractional $2$-Laplacian operator and, once more, obtain the same results described in the case of the $p$-Laplacian operator.

Assunto

Matemática – Teses, Operador p-laplaciano – Teses, Ordem superior – Teses, Multiplicidade - Teses

Palavras-chave

p-Laplaciano fracionário, Bilaplaciano, Ordem superior, Criticalidade simétrica, Desigualdade de Moser-Trudinger, Crescimento polinomial, Crescimento exponencial, Multiplicidade, Soluções radiais, Soluções não radiais, Ground state

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por