Calix[n]arene-based immunogens: a new non-proteic strategy for anti-cocaine vaccine
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
Introduction
Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure.
Objectives
The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties.
Methods
The preclinical assessment corresponded to the immunogenicity and dose–response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood–brain-barrier (BBB), modifying its biodistribution was also investigated.
Results
Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model.
Conclusion
The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.
Abstract
Assunto
Cocaína, Dependência química, Imunoterapia
Palavras-chave
Cocaine, Crack, Chemical addiction, Calixarenes, Immunotherapy, TRODAT-1
Citação
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S2090123221001715