Temporal quantum correlations in inelastic light scattering from water
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
Water is one of the most prevalent chemicals on our planet, an integral part of both our environment and our existence as a species. Yet it is also rich in anomalous behaviors. Here we reveal that water is a novel—yet ubiquitous—source for quantum correlated photon pairs at ambient conditions. The photon pairs are
produced through Raman scattering, and the correlations arise from the shared quantum of a vibrational mode between the Stokes and anti-Stokes scattering events. We confirm the nonclassical nature of the produced photon pairs by showing that the cross-correlation and autocorrelations of the signals violate a Cauchy-Schwarz inequality by over 5 orders of magnitude. The unprecedented degree of violating the inequality in pure water, as well as the well-defined polarization properties of the photon pairs, points to its usefulness in quantum information.
Abstract
Assunto
Fótons, Espalhamento, Informação quântica
Palavras-chave
Optomechanics, Quantum state engineering, Water, Raman scattering
Citação
Curso
Endereço externo
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.243603