Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/35858
Tipo: Dissertação
Título: Bioacessiblidade no sistema digestivo/respiratório, determinação das fases e fontes de arsênio em partículas finas superficiais
Título(s) alternativo(s): Gastric/lung bioaccessibility and identification of arsenic-bearing phases and sources of fine surface dust in a gold mining district
Autor(es): Marcos do Amaral Morais
primer Tutor: Virginia Sampaio Teixeira Ciminelli
primer Co-tutor: Massimo Gasparon
primer miembro del tribunal : Mônica Cristina Teixeira
Segundo miembro del tribunal: Júlio César José da Silva
Tercer miembro del tribunal: Cláudia Lima Caldeira
Resumen: Arsenic exposure and the consequent risks to human health, represents a common concern for populations living near gold mining operations producing arsenic-bearing wastes. This is the case of arsenic-rich gold mining districts in the State of Minas Gerais, Brazil. Arsenic bioaccessibility (BAC) in fine surface dust (FSD, particle size ≤10 µm) and surface dust samples (particle size ≤250 µm) collected from a gold mining district was used as a tool to determine the portion of arsenic that would be available via simulated lung and gastrointestinal (G.I) fluids. BAC was considered low for both tests (lung 2.7 ± 1%, n = 5 and G.I 3.4 ± 2%, n = 14 for residential surface dust samples). An analytical procedure was developed to further identify arsenic-bearing phases found in FSD samples and analyze the main components that regulate arsenic solubility. Up to five different arsenic-bearing phases were identified among a total of 35 minerals surveyed by scanning electron microscopy-based automated image analysis (Mineral Liberation Analyzer - MLA). Arsenic-bearing Fe oxy-hydroxides and mixed phases comprised the main arsenic phases encountered in FSD samples, thus likely being responsible for regulating arsenic bioaccessibility. Transmission electron microscopy showed that the mixed phases comprised a mix of oriented nanostructure aggregates formed by hematite and goethite entangled with phyllosilicates. The main As-bearing phases identified in FSD samples are similar to those reported in soil samples in the same region. The predominant arsenic-bearing phase encountered in the ore was arsenopyrite, mostly in large particles (>10 µm in size), and therefore unlikely to be found in residential dust. Arsenic intake from both inhalation and ingestion were minimal when compared to total arsenic intake (considering food and water ingestion), which itself was <7% of the value established by the Food and Agriculture Organization of the United Nations Benchmark Dose Lower Confidence Limit (BMDL0.5) of 3.0µg per kg−1 body weight per day. These findings are relevant and clarify that the exposure from inhalation or ingestion of dust-related arsenic derived from the studied mining operation is likely to be minimal.
Abstract: Arsenic exposure and the consequent risks to human health, represents a common concern for populations living near gold mining operations producing arsenic-bearing wastes. This is the case of arsenic-rich gold mining districts in the State of Minas Gerais, Brazil. Arsenic bioaccessibility (BAC) in fine surface dust (FSD, particle size ≤10 µm) and surface dust samples (particle size ≤250 µm) collected from a gold mining district was used as a tool to determine the portion of arsenic that would be available via simulated lung and gastrointestinal (G.I) fluids. BAC was considered low for both tests (lung 2.7 ± 1%, n = 5 and G.I 3.4 ± 2%, n = 14 for residential surface dust samples). An analytical procedure was developed to further identify arsenic-bearing phases found in FSD samples and analyze the main components that regulate arsenic solubility. Up to five different arsenic-bearing phases were identified among a total of 35 minerals surveyed by scanning electron microscopy-based automated image analysis (Mineral Liberation Analyzer - MLA). Arsenic-bearing Fe oxy-hydroxides and mixed phases comprised the main arsenic phases encountered in FSD samples, thus likely being responsible for regulating arsenic bioaccessibility. Transmission electron microscopy showed that the mixed phases comprised a mix of oriented nanostructure aggregates formed by hematite and goethite entangled with phyllosilicates. The main As-bearing phases identified in FSD samples are similar to those reported in soil samples in the same region. The predominant arsenicbearing phase encountered in the ore was arsenopyrite, mostly in large particles (>10 µm in size), and therefore unlikely to be found in residential dust. Arsenic intake from both inhalation and ingestion were minimal when compared to total arsenic intake (considering food and water ingestion), which itself was <7% of the value established by the Food and Agriculture Organization of the United Nations Benchmark Dose Lower Confidence Limit (BMDL0.5) of 3.0µg per kg−1 body weight per day. These findings are relevant and clarify that the exposure from inhalation or ingestion of dust-related arsenic derived from the studied mining operation is likely to be minimal.
Asunto: Engenharia de minas
Tecnologia mineral
Arsênio
Bioacessibilidade
Idioma: eng
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Institución: UFMG
Departamento: ENG - DEPARTAMENTO DE ENGENHARIA METALÚRGICA
Curso: Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas
Tipo de acceso: Acesso Aberto
URI: http://hdl.handle.net/1843/35858
Fecha del documento: 29-mar-2019
Aparece en las colecciones:Dissertações de Mestrado

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
Bioacessiblidade no sistema digestivorespiratório, Determinação das Fases e Fontes de Arsênio em Partículas Finas Superficiais - A.pdfRevisão Dissertação2.98 MBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.