Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/47352
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Eric Marchezini Mazzerpt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7273276940567054pt_BR
dc.contributor.referee1Pedro Henrique Rodrigues Pereirapt_BR
dc.contributor.referee2Witor Wolfpt_BR
dc.contributor.referee3Ernane Rodrigues da Silvapt_BR
dc.creatorHerbert Eustáquio da Silva Juniorpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6195935306390779pt_BR
dc.date.accessioned2022-11-21T16:54:50Z-
dc.date.available2022-11-21T16:54:50Z-
dc.date.issued2020-03-20-
dc.identifier.urihttp://hdl.handle.net/1843/47352-
dc.description.abstractThe martensitic transformations (MT) existing in shape memory alloys (SMA) are thermoelastics and are responsible for providing unique features for this class of materials, such as shape memory and pseudoelasticity, which make them interesting for applications in motion actuators, sensors, damping devices, energy absorption/release, and elastocaloric materials. The Ni-Ti system is one of the most important SMA. At high temperatures, Cu-based alloys are a low-cost alternative to replace them, with satisfactory performance of functional properties. However, they are susceptible to fragile intergranular fracture, due to their high elastic anisotropy. In this context, an alloy from the Cu-Al-Ni system was formed by Spray and exposed to a severe plastic deformation process (SPD), called High Pressure Torsion (HPT), with 0, 1/16 and 1/2 turns, in order to modify the microstructure of the alloy overcoming the difficulties previously exhibited. X-ray diffraction (XRD) was used to identify the phases formation. The mechanical behavior was evaluated by Vickers Microhardness tests. The measurement of the produced grain sizes was performed by Optical Microscopy (OM), while the morphologies were analyzed using a Transmission Electron Microscope (TEM). Aiming at understanding the variation of functional memory shape, it was carried out Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). The results proved the effectiveness of the HPT processing, due to the increase of the hardness and reduction of the grain size. The predominance of the β’ martensite phase and the formation of self-accommodating martensitic fine plates suggested the maintenance of the shape memory functional property, which was further corroborated by the shape recovery in all processing routes used in this work.pt_BR
dc.description.resumoAs transformações martensíticas (MT) existentes nas ligas com memória de forma (SMA) são do tipo termoelástica e são as responsáveis por conferir a essa classe de materiais características únicas de memória de forma e pseudoelasticidade, que as tornam interessantes para aplicações em atuadores de movimento, sensores, amortecedores de impacto, absorção/liberação de energia, materiais elastocalóricos, entre outros. Dentre as principais ligas com memória de forma encontram-se as do sistema Ni-Ti. Em altas temperaturas, as ligas a base de Cu são uma alternativa de baixo custo para a substituição dessas, com desempenho satisfatório das propriedades funcionais. Entretanto, as ligas de Cu são susceptíveis à fratura intergranular frágil, devido à sua alta anisotropia elástica. Neste contexto, com o objetivo de modificar a microestrutura da liga e contornar as dificuldades supracitadas, a liga deste trabalho, do sistema Cu-Al-Ni, foi conformada por Spray e submetida a um processo de deformação plástica severa (Severe Plastic Deformation - SPD), denominado torção sob elevada torção (High-Pressure Torsion - HPT), com 0, 1/16 e 1/2 volta. Para a identificação das fases foi utilizada a Difração de raio-X (XRD). O comportamento mecânico foi avaliado pelos testes de Microdureza Vickers. A medição dos tamanhos de grãos gerados foi realizada com o auxílio da Microscopia Óptica (OM), enquanto as morfologias formadas foram analisadas pelo Microscópio Eletrônico de Transmissão (TEM). Para o entendimento da variação da propriedade funcional de memória de forma foram utilizadas as análises de Calorimetria Diferencial de Varredura (DSC), Microscopia de Força Atômica (AFM) e Microscopia Eletrônica de Varredura (MEV). Os resultados comprovaram a efetividade do processamento por HPT, com o aumento da dureza da amostra e redução do tamanho de grão. A predominância da fase martensita β’ e a formação de ripas martensíticas auto-acomodadas sugeriram a manutenção da propriedade funcional de memória de forma, que, mais tarde, foi comprovada pela verificação da recuperação da forma em todas as rotas de processamento deste trabalho.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA METALÚRGICApt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minaspt_BR
dc.publisher.initialsUFMGpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLigas com memória de formapt_BR
dc.subjectCu-Al-Nipt_BR
dc.subjectSpraypt_BR
dc.subjectHPTpt_BR
dc.subjectPropriedades mecânicas e funcionalpt_BR
dc.subject.otherEngenharia metalúrgicapt_BR
dc.subject.otherMetalurgia físicapt_BR
dc.subject.otherLigas (Metalurgia)pt_BR
dc.subject.otherPropriedades mecânicaspt_BR
dc.titleCaracterização mecânica e funcional de uma liga com memória de forma do sistema Cu-Al-Ni-Mn conformada por spray e deformada por HPTpt_BR
dc.typeDissertaçãopt_BR
Appears in Collections:Dissertações de Mestrado



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.