Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/48999
Type: Dissertação
Title: CALI: a novel model for visual mining of biological relevant patterns in protein-ligand graphs
Authors: Susana Medina Gordillo
First Advisor: Raquel Cardoso de Melo Minardi
First Co-advisor: Sabrina de Azevedo Silveira
First Referee: Aristóteles Goes Neto
Second Referee: Wagner Meira Junior
Abstract: Protein-ligand interaction (PLI) networks show how proteins interact with small nonprotein ligands and can be used to study molecular recognition, which plays an important role in biological systems. The binding and interaction of molecules depend on a combination of conformational and physicochemical complementarity. There are several methods to predict protein-ligand interactions, but a few are designed to identify and describe implications of intelligible factors in protein-ligand recognition. We propose CALI (Complex network-based Analysis of protein-Ligand Interactions), a strategy based on complex network modeling of protein-ligand interactions, revealing frequent and relevant patterns among them. We compared patterns obtained with CALI to those computed using Frequent Subgraph Mining (FSM) paradigm. FSM needs to run several times for a variety of support values and it also needs a mapping step, in which computed patterns are mapped to the graph input dataset through a subgraph isomorphism algorithm. On the other hand, CALI is executed once and without applying the mapping step to the input dataset. Additionally, patterns obtained with CALI were compared to experimentally determined protein-ligand interactions from previous studies involving two datasets: one composed by the well studied CDK2 enzymes and, the other, by the Ricin toxin. For CDK2 dataset, CALI found 90% of such residues and, for Ricin dataset, CALI found all residues that interact with ligands. CALI was able to predict residues experimentally determined as relevant in protein-ligand interactions for two diverse datasets. This new model requires neither running FSM nor analyzing its wide number of output patterns to find the most common protein-ligand interactions. Instead, we propose using network topological properties coupled with a powerful visual and interactive representation of data to analyze interactions. Furthermore, our strategy provides a general view of the input interaction dataset, showing the most common PLIs from a global perspective.
Abstract: Protein-ligand interaction (PLI) networks show how proteins interact with small nonprotein ligands and can be used to study molecular recognition, which plays an important role in biological systems. The binding and interaction of molecules depend on a combination of conformational and physicochemical complementarity. There are several methods to predict protein-ligand interactions, but a few are designed to identify and describe implications of intelligible factors in protein-ligand recognition. We propose CALI (Complex network-based Analysis of protein-Ligand Interactions), a strategy based on complex network modeling of protein-ligand interactions, revealing frequent and relevant patterns among them. We compared patterns obtained with CALI to those computed using Frequent Subgraph Mining (FSM) paradigm. FSM needs to run several times for a variety of support values and it also needs a mapping step, in which computed patterns are mapped to the graph input dataset through a subgraph isomorphism algorithm. On the other hand, CALI is executed once and without applying the mapping step to the input dataset. Additionally, patterns obtained with CALI were compared to experimentally determined protein-ligand interactions from previous studies involving two datasets: one composed by the well studied CDK2 enzymes and, the other, by the Ricin toxin. For CDK2 dataset, CALI found 90% of such residues and, for Ricin dataset, CALI found all residues that interact with ligands. CALI was able to predict residues experimentally determined as relevant in protein-ligand interactions for two diverse datasets. This new model requires neither running FSM nor analyzing its wide number of output patterns to find the most common protein-ligand interactions. Instead, we propose using network topological properties coupled with a powerful visual and interactive representation of data to analyze interactions. Furthermore, our strategy provides a general view of the input interaction dataset, showing the most common PLIs from a global perspective.
Subject: Computação - Teses
Bioinformática - Teses
Interação Proteína-ligante - Teses
Teoria de redes complexas - Teses
Mineração de grafos - Teses
Visualização de dados - Teses
language: eng
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
metadata.dc.publisher.department: ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
metadata.dc.publisher.program: Programa de Pós-Graduação em Ciência da Computação
Rights: Acesso Aberto
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
URI: http://hdl.handle.net/1843/48999
Issue Date: 27-Oct-2016
Appears in Collections:Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
SusanaMedinaGordillo.pdf14.77 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons