Álgebras com estruturas adicionais de crescimento polinomial

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Algebras with additional structures of polinomial growth

Primeiro orientador

Membros da banca

Rafael Bezerra dos Santos
Tatiana Aparecida Gouveia

Resumo

O clássico Teorema de Kemer, provado em $1979$, nos diz que uma variedade $V$ tem crescimento polinomial se, e somente se, $UT_2, \mathcal{G} \notin V$. A caracterização apresentada por Kemer foi estendida por outros autores para álgebras com estruturas adicionais. Em $2001$, Giambruno e Mishchenko mostraram ser necessário e suficiente excluir as $*$-álgebras $D_*$ e $M_*$ da $*$-variedade para garantir crescimento polinomial da sequência de $*$-codimensões. No mesmo ano, Giambruno, Mishchenko e Zaicev caracterizaram as supervariedades de crescimento polinomial, mostrando ser necessário e suficiente excluir cinco superálgebras da supervariedade para garantir tal resultado, são elas: $UT_2$, $\gras$, $UT_2^{gr}$, $\gras ^{gr}$ e $D^{gr}$. Em $2016$, Giambruno, dos Santos e Vieira exibiram uma caracterização das $*$-supervariedades de crescimento polinomial, mostrando ser necessário e suficiente excluir as $*$-superálgebras $D_*$, $M_*$, $D^{gr}$, $D^{gri}$ e $M^{gri}$ da $*$-supervariedade para garantir crescimento polinomial da sequência de codimensões $*$-graduadas. O objetivo principal desse trabalho consiste em exibir as caracterizações apresentadas pelos autores, fornecendo demonstrações com linguagem mais atualizada desenvolvida na PI-teoria nos últimos anos.

Abstract

The classic Kemer's Theorem, established in $1979$, states that a variety of algebras $V$ has polynomial growth if, and only if, $UT_2, \mathcal{G} \notin V$. The Kemer’s caracterization was extended to algebras with additional structures by other authors. In $2001$, Giambruno and Mishchenko proved that a necessary and sufficient condition to have $V$ as a $*$-variety of polynomial growth is excluding the $*$-algebras $D_*$ and $M_*$ from $V$. In the same year, Giambruno, Mishchenko and Zaicev characterized varieties of superalgebras with polynomial growth by the exclusion of five superalgebras from the variety of superalgebras, which are: $UT_2$, $\mathcal{G}$, $UT_2^{gr}$, $\mathcal{G} ^{gr}$ and $D^{gr}$. Finally, in $2016$, Giambruno, dos Santos and Vieira proved that it is necessary and sufficient to exclude the $*$-superalgebras $D_*$, $M_*$, $D^{gr}$, $D^{gri}$ and $M^{gri}$ from a variety of $*$-superalgebras in order to have polynomial growth. The main purpose of this dissertation is to present the previous characterizations, giving proofs with updated language developed in PI-theory in the last years.

Assunto

Matemática – Teses, Identidades polinomiais– Teses, Superálgebras – Teses

Palavras-chave

Identidades polinomiais, Codimensões, Crescimento polinomial, *-álgebras, Superálgebras, *-superálgebras

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto