Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/54501
Full metadata record
DC FieldValueLanguage
dc.creatorDivya J. Prakashpt_BR
dc.creatorKaddour Lekhalpt_BR
dc.creatorIzabela Szlufarskapt_BR
dc.creatorPaul Gregory Evanspt_BR
dc.creatorFrancesca Cavallopt_BR
dc.creatorYajin Chenpt_BR
dc.creatorMengistie Leweyehu Debasupt_BR
dc.creatorDonald E. Savagept_BR
dc.creatorChaiyapat Tangpatjaroenpt_BR
dc.creatorChristoph Friedrich Denekept_BR
dc.creatorÂngelo Malachias de Souzapt_BR
dc.creatorAdam D. Alfieript_BR
dc.creatorOmar Elleuchpt_BR
dc.date.accessioned2023-06-05T14:59:16Z-
dc.date.available2023-06-05T14:59:16Z-
dc.date.issued2021-
dc.citation.volume18pt_BR
dc.citation.issue1pt_BR
dc.citation.spage1pt_BR
dc.citation.epage14pt_BR
dc.identifier.doihttps://doi.org/10.1002/smll.202105424pt_BR
dc.identifier.issn1613-6829pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/54501-
dc.description.resumoReconfiguration of amorphous complex oxides provides a readily controllable source of stress that can be leveraged in nanoscale assembly to access a broad range of 3D geometries and hybrid materials. An amorphous SrTiO3 layer on a Si:B/Si1- x Gex :B heterostructure is reconfigured at the atomic scale upon heating, exhibiting a change in volume of ≈2% and accompanying biaxial stress. The Si:B/Si1- x Gex :B bilayer is fabricated by molecular beam epitaxy, followed by sputter deposition of SrTiO3 at room temperature. The processes yield a hybrid oxide/semiconductor nanomembrane. Upon release from the substrate, the nanomembrane rolls up and has a curvature determined by the stress in the epitaxially grown Si:B/Si1- x Gex :B heterostructure. Heating to 600 °C leads to a decrease of the radius of curvature consistent with the development of a large compressive biaxial stress during the reconfiguration of SrTiO3 . The control of stresses via post-deposition processing provides a new route to the assembly of complex-oxide-based heterostructures in 3D geometry. The reconfiguration of metastable mechanical stressors enables i) synthesis of various types of strained superlattice structures that cannot be fabricated by direct growth and ii) technologies based on strain engineering of complex oxides via highly scalable lithographic processes and on large-area semiconductor substrates.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE FÍSICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofSmall-
dc.rightsAcesso Restritopt_BR
dc.subjectComplex oxidespt_BR
dc.subjectMetastable stressorspt_BR
dc.subjectNanomembranespt_BR
dc.subject.otherÓxidospt_BR
dc.subject.otherNanomembranaspt_BR
dc.titleReconfiguration of amorphous complex oxides: a route to a broad range of assembly phenomena, hybrid materials, and novel functionalitiespt_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttps://onlinelibrary.wiley.com/doi/10.1002/smll.202105424pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-9665pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8515-4196pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8556-386Xpt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8703-4283pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-1185-981Xpt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-4908-2062pt_BR
Appears in Collections:Artigo de Periódico

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.