Modelos de aprendizado de máquina aplicados à manutenção preditiva de pequenas centrais geradoras hidrelétricas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Roberto da Costa Quirino
Leonardo Goliatt da Fonseca
Magno Silvério Campos
Frederico Gualberto Ferreira Coelho

Resumo

A manutenção de pequenas centrais hidrelétricas é um tópico essencial para garantir a expansão de fontes de energias limpas e o fornecimento de energia necessária para as próximas décadas. No contexto industrial moderno, a manutenção preditiva guia intervenções e reparos de acordo com o estado de saúde da máquina, calculado a partir de técnicas estatísticas e computacionais. O trabalho atual tem como objetivo principal propor um modelo de manutenção específico para pequenas usinas hidrelétricas. A tese é apresentada em formato de coleção de artigos, sendo o primeiro uma revisão sistemática sobre manutenção preditiva no setor hidrelétrico, o segundo sobre o perfil de manutenção e operação das usinas e formulação do problema, e o terceiro sobre a aplicação do método de floresta de isolamento extendida para detecção de anomalias para diagnóstico inteligente de falhas. Como conclusão, apresentamos duas linhas de ação para trabalho para a tese final: a primeira na área de diagnóstico inteligente por tipo de falhas e a segunda em relação ao prognóstico de variáveis críticas para a operação.

Abstract

Maintenance in small hydroelectric plants is fundamental for guaranteeing the expansion of clean energy sources and supplying the energy estimated to be necessary for the coming decades. In the modern industrial context, predictive maintenance guides interventions and repairs based on the state of health of the machine, calculated from statistical and computational techniques. The current work has as main objective to propose a specific maintenance model for small hydroelectric plants. The thesis proposal is presented in the form of a collection of articles, the first being a systematic review on predictive maintenance in the hydroelectric sector, the second on the maintenance and operation profile of the plants and the formulation of the problem, and the third on the application of the method of extended isolation forest for anomaly detection for intelligent fault diagnosis. As a conclusion, we present two lines of action for work for the final thesis: the first in the area of intelligent diagnosis by type of failures and the second in relation to the prognosis of critical variables for the operation.

Assunto

Engenharia de produção, Usinas hidrelétricas, Modelagem, Falha de sistema (Engenharia)

Palavras-chave

Manutenção preditiva, Pequenas centrais hidrelétricas, Modelagem estatística e computacional, Prognóstico de falhas, Diagnóstico inteligente de falhas

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por