Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/60871
Full metadata record
DC FieldValueLanguage
dc.creatorReinaldo Santos de Limapt_BR
dc.creatorGustavo Andres Guerrero Erasopt_BR
dc.creatorElisabete Maria de Gouveia Dal Pinopt_BR
dc.creatorAlex Lazarianpt_BR
dc.date.accessioned2023-11-13T16:34:45Z-
dc.date.available2023-11-13T16:34:45Z-
dc.date.issued2021-
dc.citation.volume503pt_BR
dc.citation.issue1pt_BR
dc.citation.spage1290pt_BR
dc.citation.epage1309pt_BR
dc.identifier.doihttps://doi.org/10.1093/mnras/stab470pt_BR
dc.identifier.issn1365-2966pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/60871-
dc.description.resumoThe rate of magnetic field diffusion plays an essential role in several astrophysical plasma processes. It has been demonstrated that the omnipresent turbulence in astrophysical media induces fast magnetic reconnection, which consequently leads to large-scale magnetic flux diffusion at a rate independent of the plasma microphysics. This process is called 'reconnection diffusion' (RD) and allows for the diffusion of fields, which are dynamically important. The current theory describing RD is based on incompressible magnetohydrodynamic (MHD) turbulence. In this work, we have tested quantitatively the predictions of the RD theory when magnetic forces are dominant in the turbulence dynamics (Alfvénic Mach number MA < 1). We employed the Pencil Code to perform numerical simulations of forced MHD turbulence, extracting the values of the diffusion coefficient ηRD using the test-field method. Our results are consistent with the RD theory (⁠ηRD∼M3A for MA < 1) when turbulence approaches the incompressible limit (sonic Mach number MS ≲ 0.02), while for larger MS the diffusion is faster (⁠ηRD∼M2A⁠). This work shows for the first time simulations of compressible MHD turbulence with the suppression of the cascade in the direction parallel to the mean magnetic field, which is consistent with incompressible weak turbulence theory. We also verified that in our simulations the energy cascading time does not follow the scaling with MA predicted for the weak regime, in contradiction with the RD theory assumption. Our results generally support and expand the RD theory predictions.pt_BR
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.description.sponsorshipFAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulopt_BR
dc.format.mimetypepdfpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE FÍSICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society-
dc.rightsAcesso Abertopt_BR
dc.subjectMagnetic fieldspt_BR
dc.subjectMagnetic reconnectionpt_BR
dc.subjectMagnetohydrodynamicpt_BR
dc.subjectTurbulencept_BR
dc.subjectStarspt_BR
dc.subject.otherCampos magnéticospt_BR
dc.subject.otherEstrelaspt_BR
dc.subject.otherDifusãopt_BR
dc.titleDiffusion of large-scale magnetic fields by reconnection in MHD turbulencept_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttps://academic.oup.com/mnras/article/503/1/1290/6144594pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6880-4468pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2671-8796pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8058-4752pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-7336-6674pt_BR
Appears in Collections:Artigo de Periódico

Files in This Item:
File Description SizeFormat 
Diffusion of large-scale magnetic fields by reconnection in MHD.pdf5.51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.