Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/61104
Full metadata record
DC FieldValueLanguage
dc.creatorYe Zhengpt_BR
dc.creatorJaime A. Martinez-Acostapt_BR
dc.creatorMohammed Khimjipt_BR
dc.creatorLuiz Cláudio de Almeida Barbosapt_BR
dc.creatorGuy J. Clarksonpt_BR
dc.creatorMartin Willspt_BR
dc.date.accessioned2023-11-17T20:53:12Z-
dc.date.available2023-11-17T20:53:12Z-
dc.date.issued2022-11-14-
dc.citation.volume8pt_BR
dc.citation.issue1pt_BR
dc.citation.spagee35pt_BR
dc.citation.epage11pt_BR
dc.identifier.doihttps://doi.org/10.3390/ecsoc-25-11774pt_BR
dc.identifier.issn2673-4583pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/61104-
dc.description.resumoIn 1995, Noyori and co-workers made a breakthrough with their design of practical ruthenium-based catalysts, which combined the homochiral TsDPEN ligand with a Ru(II) arene [1,2]. Using (R,R)-1 at a loading of 0.5 mol% in either KOH-iPrOH or the azeotropic mixture of formic acid–triethylamine (FA:TEA, 5:2 molar ratio), the reduction of acetophenone was achieved in up to 98% ee (Figure 1).The mechanism for the asymmetric transfer hydrogenation (ATH) with Noyori–Ikariya catalysts is now well-established (Figure 2) [3,4,5,6,7,8,9]. The precatalyst can be activated by elimination of HCl to form a 16-electron neutral Ru(II) complex. Then, the 16-electron complex abstracts two hydrogen atoms from the hydrogen donor, such as isopropanol, a formic acid/triethylamine (FA/TEA) mixture or sodium formate, to form a hydride that contains an 18-electron Ru(II) centre. Finally, the two hydrogen atoms are transferred to the C=O group and reduce ketone substrates into chiral alcohol products. Meanwhile, the 16-electron neutral Ru(II) complex is regenerated and can restart the catalytic cycle. The six-membered transition state can be stabilized by the combination of electrostatic interactions and steric effects. Edge/face (or CH/π) electrostatic interaction makes the electron-rich aryl group of a substrate favour the position adjacent to the η6-arene ring of the catalyst (Figure 3), whereas the large group and electron group favour the position distal to η6-arene ring (Figure 4).pt_BR
dc.format.mimetypepdfpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICEX - INSTITUTO DE CIÊNCIAS EXATASpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE QUÍMICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofChemistry Proceedingspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCatalysispt_BR
dc.subjectNoyori catalystpt_BR
dc.subjectReductionpt_BR
dc.subjectEnatioselective reductionpt_BR
dc.subject.otherQuímicapt_BR
dc.subject.otherCatálisept_BR
dc.subject.otherRedução (Química)pt_BR
dc.subject.otherHidrogenaçãopt_BR
dc.titleAsymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones and o-Hydroxyphenyl Ketones Using Noyori-Ikariya Catalystspt_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttp://https://doi.org/10.3390/ecsoc-25-11774pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-9620-7302pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5395-9608pt_BR
Appears in Collections:Artigo de Periódico



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.