Use este identificador para citar ou linkar para este item: http://hdl.handle.net/1843/77356
Tipo: Dissertação
Título: Propriedade fraca de Lefschetz e a classificação de Sistemas de Togliatti minimais monomiais
Título(s) alternativo(s): Weak Lefschetz property and the classification of minimal monomial Togliatti Systems
Autor(es): Janaíne Geralda Mesquita Martins
Primeiro Orientador: Aline Vilela Andrade
Primeiro membro da banca : André Luis Contiero
Segundo membro da banca: Rodrigo Gondim
Resumo: Classificar variedades suaves que satisfazem pelo menos uma equação de Laplace é um problema antigo em geometria algébrica e diferencial, como pode ser visto em \cite{togliatti1946alcune} e \cite{Tog}, onde E. Togliatti forneceu uma das primeiras contribuições para este problema. Ele provou que existe um e apenas um exemplo de superfície racional em $\mathbb{P}^5$ parametrizada por cúbicas e satisfazendo uma equação de Laplace de ordem $2$. Em \cite{mezzettiaaa2013laplace}, E. Mezzetti, R. M. Miró-Roig e G. Ottaviani provaram que existe uma relação entre a existência de variedades projetivas $X \subset \mathbb{P}^N$ satisfazendo pelo menos uma equação de Laplace de ordem $s \geq 2$ e a existência de ideais artinianos homogêneos $I \subset R=\kappa[x_0,\cdots,x_n]$ gerados por formas de grau $d$ que falham a propriedade fraca de Lefschetz no grau $d-1 $. Eles mostraram que um ideal artiniano $I \subset R$ gerado por $r$ formas de grau $d$, onde $r \leq {d+n-1\choose n-1}$, falha propriedade fraca de Lefschetz no grau $d- 1$ se, e somente se, a projeção da variedade Veronese $V(n,d)$ pelo sistema linear $|I^{-1}_d|$, denotada por $X_{I^{-1}_d}$, possui defeito osculatório de ordem $d-1$. Neste caso, $I$ é chamado de \textit{ sistema de Togliatti}. Embora o problema de classificar todas as variedades projetivas que possuem defeito osculatório, e por conseguinte, todos os sistemas de Togiatti, pareça estar fora de alcance no momento, neste trabalho voltaremos nossos esforços para o estudo do caso monomial, uma vez que, neste caso, a variedade associada $X_{I^{-1}_d}$ é tórica, e diversas ferramentas combinatórias podem ser utilizadas para o estudo dos sistemas Togliatti.
Abstract: Classifying smooth varieties that satisfy at least one Laplace equation is an ancient problem in algebraic and differential geometry, as can be seen in [28] and [27], where E. Togliatti provided one of the earliest contributions to this problem. He proved that there exists one and only one example of a rational surface in P 5 parametrized by cubics and satisfying a Laplace equation of order 2. In [20], E. Mezzetti, G. Ottaviani and R. M. Miró-Roig proved that there is a relationship between the existence of projective varieties X ⊂ P N satisfying at least one aplace equation of order s ≥ 2 and the existence of homogeneous Artinian ideals I ⊂ R = κ[x0, · · · , xn] generated by forms of degree d that fail the weak Lefschetz property in degree d − 1. They showed that an Artinian ideal I ⊂ R generated by r forms of degree d, where r ≤ d+n−1 n−1 ,fails the weak Lefschetz property in degree d−1 if, and only if, the projection of the Veronese variety V (n, d) by the linear system |I −1d|, denoted by XI −1 d , has osculatory defect of order d − 1. In this case, I is called a Togliatti system. Although the problem of classifying all projective varieties that have osculatory defect, and consequently, all Togliatti systems, seems to be out of reach at the moment, in this work, we will focus our efforts on the study of the monomial case, since in this case, the associated variety XI −1 d is toric, and various combinatorial tools can be used for the study of Togliatti systems.
Assunto: Matemática – Teses
Geometria algébrica – Teses
Equações diferenciais – Teses
Laplace, Transformadas de – Teses
Idioma: por
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Instituição: UFMG
Departamento: ICX - DEPARTAMENTO DE MATEMÁTICA
Curso: Programa de Pós-Graduação em Matemática
Tipo de Acesso: Acesso Aberto
URI: http://hdl.handle.net/1843/77356
Data do documento: 22-Mar-2024
Aparece nas coleções:Dissertações de Mestrado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação_Janaine_G_M_Martins___Versão_final.pdfDissertação de Mestrado1.59 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.