Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/IGCC-9NFTZ7
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Philippe Maillardpt_BR
dc.contributor.referee1Yosio Edemir Shimabukuropt_BR
dc.contributor.referee2Yule Roberta Ferreira Nunespt_BR
dc.contributor.referee3Bernardo Machado Gontijopt_BR
dc.contributor.referee4Benoît St-Ongept_BR
dc.creatorThiago de Alencar Silvapt_BR
dc.date.accessioned2019-08-09T15:59:54Z-
dc.date.available2019-08-09T15:59:54Z-
dc.date.issued2012-02-28pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/IGCC-9NFTZ7-
dc.description.abstractRiparian forests play an important role in the ecological balance of river ecosystems. The knowledge of riparian vegetation biophysical parameters is essential for developing strategies aimed at their conservation. Medium resolution sensors, such as Landsat-TM, have limited use in delineating and obtaining quantitative information of the riparian forests, given their narrow cross section in the landscape. An alternative to this fact consists in using high-spatial resolution data (<5m). The objective of this study is to describe a methodology for delineating riparian forests and extracting their biophysical parameters from field data and IKONOS images. The riparian forest delineation process is divided into two steps. In the first step, the riparian zone was defined on Depth to Water (DTW) algorithm application in the digital surface models. Then, the IKONOS images were classified into two classes: arboreal and non-arboreal using the 5m DTW threshold as a processing mask. The softwares e- Cognition, MAGIC (Map Guide Image Classification) and SPRING were compared in the riparian forest unsupervised classification. Allometric measurements were made in 280 plots (10x10m) of riparian area from both sides of the Pandeiros River, located in Northern Minas Gerais. These data were analyzed together with spectral and textural parameters of IKONOS images in order to develop predictive models of riparian forest biophysical structure. The texture image data were acquired from co-occurrence gray levels matrix features and semivariograms analysis. The classifiers e-Cognition, MAGIC and SPRING showed results more than 85% of accuracy, when compared with the validation data developed for this research. In general, predictive models results showed low determination coefficients. The best results for biophysical structure modeling were obtained, respectively, for the leaf area index and volume in the Pântano site, with R2 = 0.83 and R2 = 0.55.pt_BR
dc.description.resumoAs matas ribeirinhas desempenham um papel importante no equilíbrio ecológico dos ecossistemas fluviais. O conhecimento dos parâmetros biofísicos da vegetação ribeirinha é essencial para o desenvolvimento de estratégias que visam a sua conservação. Sensores de média resolução espacial, tal como o Landsat-TM, possuem limitações na delimitação e obtenção de informações quantitativas das matas ribeirinhas, pois estas apresentam estreita seção transversal na paisagem. Uma alternativa para este fato é a utilização de dados de alta resolução espacial (<5m). O objetivo deste estudo é descrever uma metodologia para delimitar a mata ribeirinha e extrair seus parâmetros biofísicos a partir de dados de campo e imagens IKONOS. O processo para a delimitação da mata ribeirinha é dividido em duas etapas. Na primeira etapa, a zona ribeirinha foi definida com base na aplicação do algoritmo Depth to Water (DTW) nos modelos digitais de superfície. Em seguida, as imagens IKONOS foram classificadas em duas classes: arbóreo e não-arbóreo utilizando o limiar DTW de 5m como máscara de análise no processamento. Os programas e-Cognition, MAGIC (Map Guide Image Classification) e SPRING foram comparados no processo de classificação nãosupervisionada da mata ribeirinha. Medidas alométricas foram realizadas em 280 parcelas (10x10m) na zona ribeirinha em ambas as margens do rio Pandeiros, localizado no Norte de Minas Gerais. Estes dados foram analisados em conjunto com parâmetros espectrais e de textura das imagens IKONOS no intuito de elaborar modelos preditivos da estrutura biofísica da mata ribeirinha. Os dados de textura de imagem foram adquiridos a partir da extração de feições da matriz de co-ocorrência de níveis de cinza e da análise dos semi-variogramas. Os classificadores e-Cognition, MAGIC e SPRING apresentaram resultados superiores a 85% de precisão, quando comparados com os dados de validação elaborados para esta pesquisa. No geral, os resultados dos modelos preditivos apresentaram baixos valores de coeficiente de determinação. Os melhores resultados de modelagem da estrutura ribeirinha foram obtidos, respectivamente, para o índice de área foliar e volume do sítio de análise Pântano com R2 = 0,83 e R2 = 0,55.pt_BR
dc.languagePortuguêspt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.initialsUFMGpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectGeografiapt_BR
dc.subject.otherVegetação  Mapeamento  Minas Gerais pt_BR
dc.subject.otherSolo urbano  Uso pt_BR
dc.subject.otherMata ciliarpt_BR
dc.subject.otherUnidades de conservação pt_BR
dc.subject.otherSensoriamento remotopt_BR
dc.titleDelimitação e estimativa da estrutura da mata ribeirinha a partir de imagens de alta resoluçãopt_BR
dc.typeTese de Doutoradopt_BR
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
tese_thiago_de_alencar_silva.pdf22.99 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.