Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/RAOA-BBSNWX
Type: Dissertação de Mestrado
Title: Mapeamento explícito como Kernel em aprendizado de máquinas de vetores de suporte
Authors: Carla Caldeira Takahashi
First Advisor: Antonio de Padua Braga
First Referee: Marcelo Cardoso
Second Referee: Marcelo Azevedo Costa
Abstract: Os problemas que podem ser resolvidos por métodos de aprendizado de máquina também têm influência sobre os algoritmos implementados, eles são divididos em três grandes categorias: a regressão, a classificação e o agrupamento. O problema abordado ao longo desta dissertação é a classificação de padrões, que tem como objetivo criar superfícies de separações no espaço para o dividir em regiões de acordo com as classes dos padrões. A classificação é bastante parecida com o agrupamento, mas este não tem acesso à classe esperada para cada padrão, o que faz com que estes métodos estejam mais relacionados à distribuição dos dados no espaço. A maximização de margem é uma abordagem para problemas de aprendizado de máquina bastante apropriada uma vez que a capacidade de generalização de um método qualquer está relacionada a sua margem. Dessa forma é possível constatar que classificadores de margem larga são mais robustos quando devem determinar a classe de dados desconhecidos. Dentre os métodos de maximização de margem, as máquinas de vetores de suporte ou SVMs, utilizam o algoritmo de otimização baseados em Lagrangiano para determinar vetores de suporte, os quais constroem uma superfície de separação cuja distância, ou margem, seja o mais distante possível dos padrões de todas as classes. As SVMs utilizam kernels que tem como finalidade a projeção de dados de entrada em um espaço que permita a separação dos dados, possibilitando, assim, não só a sua classificação como também a regressão de funções. Atualmente as SVMs ainda são um dos métodos melhores e mais utilizados métodos na literatura. O Mapeamento Explícito, por sua vez, é uma abordagem mais recente que se tornou popular com o desenvolvimento das Máquinas de Aprendizado Extremo, as ELM. Estas máquinas possuem a implementação bem simples que permitem a criação de um classificador utilizando apenas cálculos analíticos e não iterativos. A ELM utiliza um mapeamento explícito aleatório para projetar o espaço de entrada em um espaço de características de maior dimensionalidade, o que possibilita a separação linear dos dados neste espaço projetado. Nas ELM o mapeamento é compreendido como a camada intermediária de uma rede neural cujos pesos foram atribuídos aleatoriamente, e o único parâmetro de ajuste é a quantidade de neurônios. A camada de saída da ELM pode ser ajustada de forma analítica, o que torna o método simples, rápido e elegante. No entanto, o mapeamento explícito pode, também, ser interpretado como um kernel complexo, cujos parâmetros são, somente, a dimensão do mapeamento e a variância da distribuição que gerou os pesos. Como a quantidade de neurônios, ou seja, a dimensão do mapeamento, se torna insensível para a desempenho do classificador, quando ela é grande o suficiente, e a variância da função geradora dos pesos também não apresenta efeito algum, então este método pode ser considerado não paramétrico. É amplamente aceita a necessidade de se utilizar métodos que promovam a maximização de margem, uma forma possível de se aperfeiçoar a SVM é o emprego de kernels não paramétricos. Com isso o método se torna mais simples de ser implementado e empregado, já que dispensa uma longa metodologia para o ajuste apropriado dos parâmetros. Com esta motivação foi implementado um método que utiliza o mapeamento explícito como kernel, assim a grande dimensionalidade do espaço de características permite a separação linear dos dados ao mesmo tempo que é promovida a maximização da margem de classificação. Ao mesmo tempo, a utilização de uma máquina linear juntamente com o mapeamento que não requer o ajuste de qualquer parâmetro
Abstract: The problems that can be solved through the machine learning approach also have influence on particularities of the implemented algorithms, they are divided in three large groups: regression, classification and clustering. This dissertation deals with pattern classification problems, which aim to create separating surfaces along the pattern space dividing it in regions according to the pattern classes. Classification problems are quite similar to clustering problems, however the latter does not have access to the expected class for each pattern, and therefore its methods use structural characteristics of the data distribution in the space. The margin maximization approach for machine learning problems is appropriated, since the capability of generalization of any classification method is related to its margin. Therefore, it is possible to assert that large margin classifiers are more robust when classifying unknown data. Among large margin classifiers methods, the support vectors machines, SVM, use a Lagrangian based algorithm to determine support vectors, which constructs a separating surface whose distance, or margin, to every class patterns is the largest as possible. The SVM use kernels with the purpose of mapping the input space into a feature space that allows the data separation, allowing not only the pattern classification but also the function regression. Nowadays the SVM are still one of the best and most used methods in the academia. Explicit mapping approach became popular recently with the proposal of the extreme learning machines, ELM. These machines have a rather simple implementation that allows the creation of a classifier that uses only analytical calculations, discarding any iterations. The ELM uses a random explicit mapping of the input space into a feature space of higher dimensionality, allowing the linear separability of the data in the mapped space. For the ELM, the mapping is construed as the hidden layer of a feedforward neural network whose weights are assigned randomly, and the single parameter to be tuned in it is the quantity of neurons. The output layer, in the ELM, has its weights tuned according to an analytical calculation, which makes this method simple, fast and very elegant. The explicit mapping can also be interpreted as a complex kernel, whose parameters are only the mapping dimension and the variance of the random distribution that generated the weights. Since the number of neurons, in other words the mapping dimension, is not sensible by the methods performance, when it is big enough, and the variance has no effect either, this method can be considered non parametrical. The need of using large margin methods is widely accepted, hence it is possible to improve SVMs by using non parametric kernels. Thus the classifier becomes simpler to be implemented and used, since it is exempt of using a complicated methodology for a fine parameter tuning. With this motivation it was implemented a method that uses explicit mapping as kernel, therefore the great dimensionality of the feature space allows the linear separability of the data at the same time that the margin is maximized. Meanwhile, the use of the non-parametric explicit mapping and a linear support vectors machine allows a virtually non-parametric at all
Subject: Máquinas
Engenharia elétrica
Kernel, Funções de
language: Português
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
Rights: Acesso Aberto
URI: http://hdl.handle.net/1843/RAOA-BBSNWX
Issue Date: 12-Feb-2015
Appears in Collections:Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
dissertacao_carla_c_takahashi.pdf1.77 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.