Exponential consensus with decay rate estimation for heterogeneous multi-agent systems

dc.creatorCarlos Raimundo Pereira dos Santos Junior
dc.creatorJosé Reginaldo Hughes Carvalho
dc.creatorFernando de Oliveira Souza
dc.creatorHeitor Judiss Savino
dc.date.accessioned2025-05-22T14:11:36Z
dc.date.accessioned2025-09-09T01:22:21Z
dc.date.available2025-05-22T14:11:36Z
dc.date.issued2019
dc.identifier.doihttps://doi.org/10.1007/s10846-018-0782-z
dc.identifier.issn1573-0409
dc.identifier.urihttps://hdl.handle.net/1843/82455
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofJournal of intelligent and robotic systems
dc.rightsAcesso Restrito
dc.subjectSistemas de tempo discreto
dc.subject.otherHeterogeneous multi-agent systems
dc.subject.otherConsensus with estimated convergence rate
dc.subject.otherTime-varying delay
dc.subject.otherLyapunov-Krasovskii
dc.subject.otherLinear matrix inequalities
dc.titleExponential consensus with decay rate estimation for heterogeneous multi-agent systems
dc.typeArtigo de periódico
local.citation.epage553
local.citation.issue2
local.citation.spage543
local.citation.volume95
local.description.resumoThis paper presents an analysis method, based on linear matrix inequalities, for consensus with estimated convergence rate, in the presence of input delays. It is assumed that the delays are nonuniform, time-varying, and possibly non-differentiable. The proposed approach consists in rewriting the multi-agent system as a reduced-order delayed linear system, such that consensus can be analyzed by means of Lyapunov-Krasovskii stability theory. Finally, the efficiency of the proposed method is verified by numerical simulations.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://link.springer.com/article/10.1007/s10846-018-0782-z

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: