Non-Nilpotent Lie Algebras with Non-Singular Derivations

dc.creatorMarcos Golulart Lima
dc.date.accessioned2019-08-11T00:12:08Z
dc.date.accessioned2025-09-09T00:49:39Z
dc.date.available2019-08-11T00:12:08Z
dc.date.issued2018-03-08
dc.description.abstractLet L be a Lie algebra and (..) be a derivation of L. The derivation (..) is non-singular if it is injective as linear transformation. By a well-known result of N. Jacobson, a Lie algebra of finite dimension over a field of characteristic zero having a non-singular derivation is nilpotent.Although we know that this result is not valid in characteristic p>0, little is known about Lie algebras in p characteristic with non-singular derivations. In this text, we explore the structure of solvable, non-nilpotent Lie algebras with non-singular derivations. We present a new concept for derivations, called Compatible Pairs. This concept is used, for example, to calculate the derivations of an extension of Lie algebras. Another application obtained was a version of Jacobsons Theorem for Lie algebras over fields characteristic p>0. Using Compatible pairs it was possible to obtain a characterization of non-nilpotent Lie algebras, with an abelian deal of codimension 1 and non-singular derivations. Further, a new example of non-nilpotent Lie algebras, with non-singular derivations and arbitrarily nilpotency class was constructed. Finally, we prove that if H is the Heisenberg algebra over a field of characteristic p>0, and I is aH-module such that the semi-direct sum of H and I, is a non-nilpotent Lie algebras with nonsingular derivation, then the dimension of I is, at least, p + 3.
dc.identifier.urihttps://hdl.handle.net/1843/EABA-AXYFWW
dc.languageInglês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática
dc.subjectLie, Algebra de
dc.subjectTeoria dos grupos
dc.subjectAlgebra abstrata
dc.subject.otherTeorema
dc.subject.otherÁlgebras de Lie
dc.subject.otherDerivações Não-Singulares
dc.subject.otherde Jacobson
dc.subject.otherPares Compatíveis
dc.titleNon-Nilpotent Lie Algebras with Non-Singular Derivations
dc.typeTese de doutorado
local.contributor.advisor1Csaba Schneider
local.contributor.referee1Renato Vidal da Silva Martins
local.contributor.referee1Viktor Bekkert
local.contributor.referee1Emerson Ferreira de Melo
local.contributor.referee1Victor Petrogradskiy
local.description.resumoSeja L um álgebra de Lie e (..) uma derivação de L. A derivação (..) é dita não-singular se for injetiva como transformação linear. Por um resultado bem conhecido de N. Jacobson, uma álgebra de Lie de dimensão finita, sobre um corpo de característica zero e com uma derivação não-singular é nilpotente. Embora saibamos que esse resultado não é válido em característica p>0, pouco se sabe sobre álgebras de Lie em característica p>0 com derivações nãosingulares.Neste texto, exploramos a estrutura das álgebras de Lie solúveis, não-nilpotentes e com derivação não-singular. Apresentamos um novo conceito para derivações, chamado Pares Compatíveis. Esse conceito é usado, por exemplo, para calcular as derivações de uma extensão de álgebra de Lie. Outra aplicação obtida é uma versão do teorema de Jacobson para as álgebras de Lie sobre corpos com característica p>0. Usando Pares Compatíveis foi possível obter uma caracterização para álgebras de Lie não-nilpotentes, com um ideal abeliano de codimensões 1 e derivação não-singular. Adicionalmente, construímos um exemplo de álgebra de Lie nãonilpotente, com derivação não-singular e classe de nilpotência arbitraria. Por fim, provamos quese H é a álgebra de Heisenberg sobre um corpo de característica p e I um H-módulo, tais que a soma semi-direta de H e I é uma álgebra de Lie não-nilpotente com derivação não-singular, então a dimensão de I é, no mínimo, p + 3.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese_marcos_goulart.pdf
Tamanho:
602.36 KB
Formato:
Adobe Portable Document Format