The usefulness of short-term high-fat/high salt diet as a model of metabolic syndrome in mice
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
Diabetic cardiomyopathy (DC) describes diabetes-associated changes in the structure and function of myocardium that are not directly linked to other factors such as hypertension. Currently there are some models of DC; however, they take a large time period to mimic key features. In the present study, we investigated the effects of a short-term high-fat/high salt diet (HFHS) treatment on myocardial function and structure, and vascular reactivity in C57BL/6 male mice. After 14 weeks HFHS induced hypertension (MAP = 144.95 ± 16.13 vs 92.90 ± 18.95 mm Hg), low glucose tolerance (AUC = 1049.01 ± 74.79 vs 710.50 ± 52.57 a.u.), decreased insulin sensitivity (AUC = 429.83 ± 35.22 vs 313.67 ± 19.55 a.u.) and increased adiposity (epididymal fat weight 0.96 ± 0.10 vs 0.59 ± 0.06 OW/BW × 102), aspects present in metabolic syndrome. Cardiac evaluation showed diastolic dysfunction (E/A ratio = 1.20 vs 1.90 u.a.) and cardiomyocyte hypertrophy (cardiomyocyte area = 502.82 ± 31.46 vs 385.58 ± 22.11 μm2). Lastly, vascular reactivity was impaired with higher contractile response (136.10 ± 3.49 vs 120.37 ± 5.43%) and lower response to endothelium-dependent vasorelaxation (74.01 ± 4.35 vs 104.84 ± 3.57%). In addition, the diet was able to induce an inward coronary remodeling (vascular total area: SCNS 6185 ± 800.6 vs HFHS 4085 ± 213.7 μm2). Therefore, we conclude that HFHS short-term treatment was able to induce metabolic syndrome-like state, cardiomyopathy and vascular injury working as an important tool to study cardiometabolic diseases.
Abstract
Assunto
Síndrome metabólica, Obesidade, Miocárdio - Doenças, Diabetes
Palavras-chave
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S002432051830479X?via%3Dihub#!